Major Changes: - Added Ollama as alternative LLM provider to OpenAI - Implemented flexible provider switching via environment variables - Support for multiple embedding models (OpenAI and Ollama) - Created comprehensive Ollama setup guide Configuration Changes (config.py): - Added LLM_PROVIDER and EMBEDDER_PROVIDER settings - Added Ollama configuration: base URL, LLM model, embedding model - Modified get_mem0_config() to dynamically switch providers - OpenAI API key now optional when using Ollama - Added validation to ensure required keys based on provider Supported Configurations: 1. Full OpenAI (default): - LLM_PROVIDER=openai - EMBEDDER_PROVIDER=openai 2. Full Ollama (local): - LLM_PROVIDER=ollama - EMBEDDER_PROVIDER=ollama 3. Hybrid configurations: - Ollama LLM + OpenAI embeddings - OpenAI LLM + Ollama embeddings Ollama Models Supported: - LLM: llama3.1:8b, llama3.1:70b, mistral:7b, codellama:7b, phi3:3.8b - Embeddings: nomic-embed-text, mxbai-embed-large, all-minilm Documentation: - Created docs/setup/ollama.mdx - Complete Ollama setup guide - Installation methods (host and Docker) - Model selection and comparison - Docker Compose configuration - Performance tuning and GPU acceleration - Migration guide from OpenAI - Troubleshooting section - Updated README.md with Ollama features - Updated .env.example with provider selection - Marked Phase 2 as complete in roadmap Environment Variables: - LLM_PROVIDER: Select LLM provider (openai/ollama) - EMBEDDER_PROVIDER: Select embedding provider (openai/ollama) - OLLAMA_BASE_URL: Ollama API endpoint (default: http://localhost:11434) - OLLAMA_LLM_MODEL: Ollama model for text generation - OLLAMA_EMBEDDING_MODEL: Ollama model for embeddings - MEM0_EMBEDDING_DIMS: Must match embedding model dimensions Breaking Changes: - None - defaults to OpenAI for backward compatibility Migration Notes: - When switching from OpenAI to Ollama embeddings, existing embeddings must be cleared due to dimension changes (1536 → 768 for nomic-embed-text) - Update MEM0_EMBEDDING_DIMS to match chosen embedding model Benefits: ✅ Cost savings - no API costs with local models ✅ Privacy - all data stays local ✅ Offline capability - works without internet ✅ Model variety - access to many open-source models ✅ Flexibility - easy switching between providers Version: 1.1.0 Status: Phase 2 Complete - Production Ready with Ollama Support 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
T6 Mem0 v2 - Memory System for LLM Applications
Comprehensive memory system based on mem0.ai featuring MCP server integration, REST API, hybrid storage architecture, and AI-powered memory management.
Features
- MCP Server: HTTP/SSE and stdio transports for universal AI integration
- ✅ n8n AI Agent workflows
- ✅ Claude Code integration
- ✅ 7 memory tools (add, search, get, update, delete)
- REST API: Full HTTP API for memory operations (CRUD)
- Hybrid Storage: Supabase (pgvector) + Neo4j (graph relationships)
- Synchronized Operations: Automatic sync across vector and graph stores
- Flexible LLM Support:
- ✅ OpenAI (GPT-4, GPT-3.5)
- ✅ Ollama (Llama 3.1, Mistral, local models)
- ✅ Switchable via environment variables
- Multi-Agent Support: User and agent-specific memory isolation
- Graph Visualization: Neo4j Browser for relationship exploration
- Docker-Native: Fully containerized with Docker Compose
Architecture
Clients (n8n, Claude Code, Custom Apps)
↓
┌─────────────────┬───────────────────┐
│ MCP Server │ REST API │
│ Port 8765 │ Port 8080 │
│ HTTP/SSE+stdio │ FastAPI │
└─────────────────┴───────────────────┘
↓
Mem0 Core Library (v0.1.118)
↓
┌─────────────────┬───────────────────┬───────────────────┐
│ Supabase │ Neo4j │ OpenAI │
│ Vector Store │ Graph Store │ Embeddings+LLM │
│ pgvector │ Cypher Queries │ text-embedding-3 │
└─────────────────┴───────────────────┴───────────────────┘
Quick Start
Prerequisites
- Docker and Docker Compose
- Existing Supabase instance (PostgreSQL with pgvector)
- Choose one:
- OpenAI API key (for cloud LLM)
- Ollama installed (for local LLM) - Setup Guide
- Python 3.11+ (for development)
Installation
# Clone repository
git clone https://git.colsys.tech/klas/t6_mem0_v2
cd t6_mem0_v2
# Configure environment
cp .env.example .env
# Edit .env with your credentials
# Start services
docker compose up -d
# Verify health
curl http://localhost:8080/v1/health
curl http://localhost:8765/health
Configuration
Create .env file:
Option 1: OpenAI (Default)
# LLM Configuration
LLM_PROVIDER=openai
EMBEDDER_PROVIDER=openai
OPENAI_API_KEY=sk-your-key-here
# Supabase
SUPABASE_CONNECTION_STRING=postgresql://user:pass@172.21.0.12:5432/postgres
# Neo4j
NEO4J_URI=neo4j://neo4j:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=your-password
# REST API
API_KEY=your-secure-api-key
# MCP Server
MCP_HOST=0.0.0.0
MCP_PORT=8765
# Mem0 Configuration
MEM0_COLLECTION_NAME=t6_memories
MEM0_EMBEDDING_DIMS=1536 # OpenAI embeddings
MEM0_VERSION=v1.1
Option 2: Ollama (Local LLM)
# LLM Configuration
LLM_PROVIDER=ollama
EMBEDDER_PROVIDER=ollama
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_LLM_MODEL=llama3.1:8b
OLLAMA_EMBEDDING_MODEL=nomic-embed-text
# Supabase
SUPABASE_CONNECTION_STRING=postgresql://user:pass@172.21.0.12:5432/postgres
# Neo4j
NEO4J_URI=neo4j://neo4j:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=your-password
# REST API
API_KEY=your-secure-api-key
# MCP Server
MCP_HOST=0.0.0.0
MCP_PORT=8765
# Mem0 Configuration
MEM0_COLLECTION_NAME=t6_memories
MEM0_EMBEDDING_DIMS=768 # Ollama nomic-embed-text
MEM0_VERSION=v1.1
See Ollama Setup Guide for detailed configuration.
Usage
REST API
# Add memory
curl -X POST http://localhost:8080/v1/memories/ \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{"messages":[{"role":"user","content":"I love pizza"}],"user_id":"alice"}'
# Search memories
curl -X GET "http://localhost:8080/v1/memories/search?query=food&user_id=alice" \
-H "Authorization: Bearer YOUR_API_KEY"
MCP Server
HTTP/SSE Transport (for n8n, web clients):
# MCP endpoint
http://localhost:8765/mcp
# Test tools/list
curl -X POST http://localhost:8765/mcp \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"tools/list","params":{}}'
stdio Transport (for Claude Code, local tools):
Add to ~/.config/claude/mcp.json:
{
"mcpServers": {
"t6-mem0": {
"command": "python",
"args": ["-m", "mcp_server.main"],
"cwd": "/path/to/t6_mem0_v2",
"env": {
"OPENAI_API_KEY": "${OPENAI_API_KEY}",
"SUPABASE_CONNECTION_STRING": "${SUPABASE_CONNECTION_STRING}",
"NEO4J_URI": "neo4j://localhost:7687",
"NEO4J_USER": "neo4j",
"NEO4J_PASSWORD": "${NEO4J_PASSWORD}"
}
}
}
}
n8n Integration:
Use the MCP Client Tool node in n8n AI Agent workflows:
{
"endpointUrl": "http://172.21.0.14:8765/mcp", // Use Docker network IP
"serverTransport": "httpStreamable",
"authentication": "none",
"include": "all"
}
See n8n integration guide for complete workflow examples.
Documentation
Full documentation available at: docs/ (Mintlify)
MCP Server
Integration Guides
Setup
Architecture
Project Structure
t6_mem0_v2/
├── api/ # REST API (FastAPI)
│ ├── main.py # API entry point
│ ├── memory_service.py # Memory operations
│ └── routes.py # API endpoints
├── mcp_server/ # MCP server implementation
│ ├── main.py # stdio transport (Claude Code)
│ ├── http_server.py # HTTP/SSE transport (n8n, web)
│ ├── tools.py # MCP tool definitions
│ └── server.py # Core MCP server logic
├── docker/ # Docker configurations
│ ├── Dockerfile.api # REST API container
│ └── Dockerfile.mcp # MCP server container
├── docs/ # Mintlify documentation
│ ├── mcp/ # MCP server docs
│ └── examples/ # Integration examples
├── tests/ # Test suites
├── config.py # Configuration management
├── requirements.txt # Python dependencies
└── docker-compose.yml # Service orchestration
Technology Stack
- Core: mem0ai library (v0.1.118+)
- Vector DB: Supabase with pgvector
- Graph DB: Neo4j 5.x
- LLM Options:
- OpenAI API (GPT-4o-mini, text-embedding-3-small)
- Ollama (Llama 3.1, Mistral, nomic-embed-text)
- REST API: FastAPI
- MCP: Python MCP SDK
- Container: Docker & Docker Compose
Roadmap
Phase 1: Foundation ✅ COMPLETED
- ✅ Architecture design
- ✅ REST API implementation (FastAPI with Bearer auth)
- ✅ MCP server implementation (HTTP/SSE + stdio transports)
- ✅ Supabase integration (pgvector for embeddings)
- ✅ Neo4j integration (graph relationships)
- ✅ Documentation site (Mintlify)
- ✅ n8n AI Agent integration
- ✅ Claude Code integration
- ✅ Docker deployment with health checks
Phase 2: Local LLM ✅ COMPLETED
- ✅ Local Ollama integration
- ✅ Model switching capabilities (OpenAI ↔ Ollama)
- ✅ Embedding model selection
- ✅ Environment-based provider configuration
Phase 3: Advanced Features
- ⏳ Memory versioning and history
- ⏳ Advanced graph queries and analytics
- ⏳ Multi-modal memory support (images, audio)
- ⏳ Analytics dashboard
- ⏳ Memory export/import
- ⏳ Custom embedding models
Development
# Install dependencies
pip install -r requirements.txt
# Run tests
pytest tests/
# Format code
black .
ruff check .
# Run locally (development)
python -m api.main
Contributing
This is a private project. For issues or suggestions, contact the maintainer.
License
Proprietary - All rights reserved
Support
- Repository: https://git.colsys.tech/klas/t6_mem0_v2
- Documentation: See
docs/directory - Issues: Contact maintainer
Status: Phase 2 Complete - Production Ready with Ollama Support Version: 1.1.0 Last Updated: 2025-10-15
Recent Updates
- 2025-10-15: ✅ Ollama integration complete - local LLM support
- 2025-10-15: ✅ Flexible provider switching (OpenAI ↔ Ollama)
- 2025-10-15: ✅ Support for multiple embedding models
- 2025-10-15: MCP HTTP/SSE server implementation complete
- 2025-10-15: n8n AI Agent integration tested and documented
- 2025-10-15: Complete Mintlify documentation site
- 2025-10-15: Synchronized delete operations across stores
- 2025-10-13: Initial project setup and architecture