Initial commit: Project foundation and architecture
- Add project requirements document - Add comprehensive architecture design - Add README with quick start guide - Add .gitignore for Python/Docker/Node 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
98
.gitignore
vendored
Normal file
98
.gitignore
vendored
Normal file
@@ -0,0 +1,98 @@
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
*.so
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
pip-wheel-metadata/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# Virtual Environment
|
||||
venv/
|
||||
env/
|
||||
ENV/
|
||||
.venv
|
||||
|
||||
# Environment Variables
|
||||
.env
|
||||
.env.local
|
||||
.env.*.local
|
||||
|
||||
# IDEs
|
||||
.vscode/
|
||||
.idea/
|
||||
*.swp
|
||||
*.swo
|
||||
*~
|
||||
.DS_Store
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
logs/
|
||||
*.out
|
||||
|
||||
# Database
|
||||
*.db
|
||||
*.sqlite
|
||||
*.sqlite3
|
||||
|
||||
# Docker
|
||||
.dockerignore
|
||||
|
||||
# Testing
|
||||
.pytest_cache/
|
||||
.coverage
|
||||
htmlcov/
|
||||
.tox/
|
||||
.hypothesis/
|
||||
|
||||
# Jupyter
|
||||
.ipynb_checkpoints
|
||||
*.ipynb
|
||||
|
||||
# Node (for MCP server if using npm)
|
||||
node_modules/
|
||||
package-lock.json
|
||||
yarn.lock
|
||||
|
||||
# Neo4j
|
||||
neo4j/data/
|
||||
neo4j/logs/
|
||||
neo4j/plugins/
|
||||
|
||||
# Temporary files
|
||||
tmp/
|
||||
temp/
|
||||
*.tmp
|
||||
*.bak
|
||||
*.swp
|
||||
|
||||
# OS
|
||||
Thumbs.db
|
||||
.DS_Store
|
||||
|
||||
# Secrets (never commit)
|
||||
*credentials*.json
|
||||
*secrets*.json
|
||||
*private*.key
|
||||
*.pem
|
||||
|
||||
# Documentation build
|
||||
docs/_build/
|
||||
site/
|
||||
403
ARCHITECTURE.md
Normal file
403
ARCHITECTURE.md
Normal file
@@ -0,0 +1,403 @@
|
||||
# T6 Mem0 v2 - System Architecture
|
||||
|
||||
## Executive Summary
|
||||
|
||||
Comprehensive memory system for LLM applications based on mem0.ai, featuring MCP server integration, REST API, hybrid storage (Supabase + Neo4j), and OpenAI embeddings.
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Client Layer │
|
||||
├──────────────────┬──────────────────┬──────────────────────┤
|
||||
│ Claude Code (MCP)│ N8N Workflows │ External Apps │
|
||||
└──────────────────┴──────────────────┴──────────────────────┘
|
||||
│ │ │
|
||||
│ │ │
|
||||
▼ ▼ ▼
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Interface Layer │
|
||||
├──────────────────────────────┬──────────────────────────────┤
|
||||
│ MCP Server (Port 8765) │ REST API (Port 8080) │
|
||||
│ - SSE Connections │ - FastAPI │
|
||||
│ - MCP Protocol │ - OpenAPI Spec │
|
||||
│ - Tool Registration │ - Auth Middleware │
|
||||
└──────────────────────────────┴──────────────────────────────┘
|
||||
│ │
|
||||
└────────┬───────────┘
|
||||
▼
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Core Layer │
|
||||
│ Mem0 Core Library │
|
||||
│ - Memory Management - Embedding Generation │
|
||||
│ - Semantic Search - Relationship Extraction │
|
||||
│ - Multi-Agent Support - Deduplication │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
│
|
||||
┌───────────────────┼───────────────────┐
|
||||
▼ ▼ ▼
|
||||
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
|
||||
│ Vector Store │ │ Graph Store │ │ External LLM │
|
||||
│ Supabase │ │ Neo4j │ │ OpenAI │
|
||||
│ (pgvector) │ │ (Cypher) │ │ (Embeddings) │
|
||||
│ 172.21.0.12 │ │ 172.21.0.x │ │ API Cloud │
|
||||
└─────────────────┘ └─────────────────┘ └─────────────────┘
|
||||
```
|
||||
|
||||
## Design Decisions
|
||||
|
||||
### 1. MCP Server Approach: Custom Implementation ✅
|
||||
|
||||
**Decision**: Build custom MCP server using mem0 core library with Supabase + Neo4j
|
||||
|
||||
**Rationale**:
|
||||
- Official OpenMemory MCP uses Qdrant (requirement is Supabase)
|
||||
- Community implementations provide good templates but need customization
|
||||
- Custom build ensures exact stack matching and full control
|
||||
|
||||
**Implementation**:
|
||||
- Python-based MCP server using `mcp` library
|
||||
- SSE (Server-Sent Events) for MCP protocol communication
|
||||
- Shares mem0 configuration with REST API
|
||||
|
||||
### 2. Storage Architecture: Hybrid Multi-Store ✅
|
||||
|
||||
**Vector Storage** (Supabase + pgvector):
|
||||
- Semantic search via cosine similarity
|
||||
- 1536-dimensional embeddings (OpenAI text-embedding-3-small)
|
||||
- PostgreSQL with pgvector extension
|
||||
- Connection: `172.21.0.12:5432`
|
||||
|
||||
**Graph Storage** (Neo4j):
|
||||
- Relationship modeling between memory nodes
|
||||
- Entity extraction and connection
|
||||
- Visual exploration via Neo4j Browser
|
||||
- New container on localai network
|
||||
|
||||
**Key-Value Storage** (PostgreSQL JSONB):
|
||||
- Metadata storage in Supabase
|
||||
- Eliminates need for separate Redis
|
||||
- Simplifies infrastructure
|
||||
|
||||
**Why This Works**:
|
||||
- Mem0's hybrid architecture expects multiple stores
|
||||
- Each store optimized for specific query patterns
|
||||
- Supabase handles both vector and structured data
|
||||
- Neo4j specializes in relationship queries
|
||||
|
||||
### 3. API Layer Design: Dual Interface Pattern ✅
|
||||
|
||||
**REST API**:
|
||||
- FastAPI framework
|
||||
- Port: 8080
|
||||
- Authentication: Bearer token
|
||||
- OpenAPI documentation
|
||||
- CRUD operations on memories
|
||||
|
||||
**MCP Server**:
|
||||
- Port: 8765
|
||||
- MCP protocol (SSE transport)
|
||||
- Tool-based interface
|
||||
- Compatible with Claude, Cursor, etc.
|
||||
|
||||
**Shared Core**:
|
||||
- Both use same mem0 configuration
|
||||
- Single source of truth for storage
|
||||
- Consistent behavior across interfaces
|
||||
|
||||
### 4. Docker Networking: LocalAI Network Integration ✅
|
||||
|
||||
**Network**: `localai` (172.21.0.0/16)
|
||||
|
||||
**Services**:
|
||||
```yaml
|
||||
Existing:
|
||||
- Supabase: 172.21.0.12:5432
|
||||
- N8N: (existing container)
|
||||
|
||||
New:
|
||||
- Neo4j: 172.21.0.x:7687 (Bolt) + :7474 (Browser)
|
||||
- REST API: 172.21.0.x:8080
|
||||
- MCP Server: 172.21.0.x:8765
|
||||
```
|
||||
|
||||
**Benefits**:
|
||||
- All services on same network
|
||||
- Direct container-to-container communication
|
||||
- No host networking complications
|
||||
- Persistent IPs via Docker Compose
|
||||
|
||||
### 5. Phase 1 vs Phase 2: Provider Abstraction ✅
|
||||
|
||||
**Phase 1** (OpenAI):
|
||||
```python
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": "gpt-4o-mini",
|
||||
"temperature": 0.1
|
||||
}
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": "text-embedding-3-small"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Phase 2** (Ollama):
|
||||
```python
|
||||
config = {
|
||||
"llm": {
|
||||
"provider": "ollama",
|
||||
"config": {
|
||||
"model": "llama3.1:8b",
|
||||
"ollama_base_url": "http://172.21.0.1:11434"
|
||||
}
|
||||
},
|
||||
"embedder": {
|
||||
"provider": "ollama",
|
||||
"config": {
|
||||
"model": "nomic-embed-text"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Strategy**:
|
||||
- Configuration-driven provider selection
|
||||
- Environment variable overrides
|
||||
- No code changes for provider swap
|
||||
- Mem0 natively supports both providers
|
||||
|
||||
## Component Details
|
||||
|
||||
### Mem0 Configuration
|
||||
|
||||
```python
|
||||
from mem0 import Memory
|
||||
|
||||
config = {
|
||||
# Vector Store
|
||||
"vector_store": {
|
||||
"provider": "supabase",
|
||||
"config": {
|
||||
"connection_string": "postgresql://user:pass@172.21.0.12:5432/postgres",
|
||||
"collection_name": "t6_memories",
|
||||
"embedding_model_dims": 1536,
|
||||
"index_method": "hnsw",
|
||||
"index_measure": "cosine_distance"
|
||||
}
|
||||
},
|
||||
|
||||
# Graph Store
|
||||
"graph_store": {
|
||||
"provider": "neo4j",
|
||||
"config": {
|
||||
"url": "neo4j://172.21.0.x:7687",
|
||||
"username": "neo4j",
|
||||
"password": "${NEO4J_PASSWORD}"
|
||||
}
|
||||
},
|
||||
|
||||
# LLM Provider
|
||||
"llm": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": "gpt-4o-mini",
|
||||
"temperature": 0.1,
|
||||
"max_tokens": 2000
|
||||
}
|
||||
},
|
||||
|
||||
# Embedder
|
||||
"embedder": {
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": "text-embedding-3-small",
|
||||
"embedding_dims": 1536
|
||||
}
|
||||
},
|
||||
|
||||
# Version
|
||||
"version": "v1.1"
|
||||
}
|
||||
|
||||
memory = Memory.from_config(config_dict=config)
|
||||
```
|
||||
|
||||
### REST API Endpoints
|
||||
|
||||
```
|
||||
POST /v1/memories/ - Add new memory
|
||||
GET /v1/memories/{id} - Get specific memory
|
||||
GET /v1/memories/search - Search memories
|
||||
PATCH /v1/memories/{id} - Update memory
|
||||
DELETE /v1/memories/{id} - Delete memory
|
||||
GET /v1/memories/user/{id} - Get user memories
|
||||
GET /v1/health - Health check
|
||||
GET /v1/stats - System statistics
|
||||
```
|
||||
|
||||
### MCP Server Tools
|
||||
|
||||
```
|
||||
add_memory - Add new memory to system
|
||||
search_memories - Search memories by query
|
||||
get_memory - Retrieve specific memory
|
||||
update_memory - Update existing memory
|
||||
delete_memory - Remove memory
|
||||
list_user_memories - List all memories for user
|
||||
get_memory_graph - Visualize memory relationships
|
||||
```
|
||||
|
||||
## Data Flow
|
||||
|
||||
### Adding a Memory
|
||||
|
||||
```
|
||||
1. Client → MCP/REST API
|
||||
POST memory data with user_id
|
||||
|
||||
2. Interface Layer → Mem0 Core
|
||||
Validate and process request
|
||||
|
||||
3. Mem0 Core → OpenAI
|
||||
Generate embeddings (1536-dim vector)
|
||||
|
||||
4. Mem0 Core → Supabase
|
||||
Store vector + metadata in PostgreSQL
|
||||
|
||||
5. Mem0 Core → Neo4j
|
||||
Extract entities and relationships
|
||||
Create nodes and edges in graph
|
||||
|
||||
6. Response → Client
|
||||
Return memory_id and confirmation
|
||||
```
|
||||
|
||||
### Searching Memories
|
||||
|
||||
```
|
||||
1. Client → MCP/REST API
|
||||
Search query + filters (user_id, etc.)
|
||||
|
||||
2. Interface Layer → Mem0 Core
|
||||
Process search request
|
||||
|
||||
3. Mem0 Core → OpenAI
|
||||
Generate query embedding
|
||||
|
||||
4. Mem0 Core → Supabase
|
||||
Vector similarity search (cosine)
|
||||
Retrieve top-k matches
|
||||
|
||||
5. Mem0 Core → Neo4j
|
||||
Fetch related graph context
|
||||
Enrich results with relationships
|
||||
|
||||
6. Response → Client
|
||||
Ranked results with relevance scores
|
||||
```
|
||||
|
||||
## Performance Characteristics
|
||||
|
||||
Based on mem0.ai research findings:
|
||||
|
||||
- **Accuracy**: 26% improvement over baseline OpenAI
|
||||
- **Latency**: 91% lower p95 than full-context approaches
|
||||
- **Token Efficiency**: 90% reduction via selective memory retrieval
|
||||
- **Storage**: Hybrid approach optimal for different query patterns
|
||||
|
||||
## Security Considerations
|
||||
|
||||
### Authentication
|
||||
- Bearer token authentication for REST API
|
||||
- MCP server uses client-specific SSE endpoints
|
||||
- Tokens stored in environment variables
|
||||
|
||||
### Data Privacy
|
||||
- All data stored locally (Supabase + Neo4j)
|
||||
- No cloud sync or external storage
|
||||
- User isolation via user_id filtering
|
||||
|
||||
### Network Security
|
||||
- Services on private Docker network
|
||||
- No public exposure (use reverse proxy if needed)
|
||||
- Internal communication only
|
||||
|
||||
## Scalability Considerations
|
||||
|
||||
### Horizontal Scaling
|
||||
- REST API: Multiple containers behind load balancer
|
||||
- MCP Server: Dedicated instances per client group
|
||||
- Mem0 Core: Stateless, scales with API containers
|
||||
|
||||
### Vertical Scaling
|
||||
- Supabase: PostgreSQL connection pooling
|
||||
- Neo4j: Memory configuration tuning
|
||||
- Vector indexing: HNSW for performance
|
||||
|
||||
## Monitoring & Observability
|
||||
|
||||
### Metrics
|
||||
- Memory operations (add/search/delete) per second
|
||||
- Average response time
|
||||
- Vector store query latency
|
||||
- Graph query complexity
|
||||
- Token usage (OpenAI API)
|
||||
|
||||
### Logging
|
||||
- Structured logging (JSON)
|
||||
- Request/response tracking
|
||||
- Error aggregation
|
||||
- Performance profiling
|
||||
|
||||
## Migration Path to Phase 2 (Ollama)
|
||||
|
||||
### Changes Required
|
||||
1. Update configuration to use Ollama provider
|
||||
2. Deploy Ollama container on localai network
|
||||
3. Pull required models (llama3.1, nomic-embed-text)
|
||||
4. Update embedding dimensions if needed
|
||||
5. Test and validate performance
|
||||
|
||||
### No Changes Required
|
||||
- Storage layer (Supabase + Neo4j)
|
||||
- API interfaces (REST + MCP)
|
||||
- Docker networking
|
||||
- Client integrations
|
||||
|
||||
## Technology Stack Summary
|
||||
|
||||
| Layer | Technology | Version | Purpose |
|
||||
|-------|-----------|---------|---------|
|
||||
| Core | mem0ai | latest | Memory management |
|
||||
| Vector DB | Supabase (pgvector) | existing | Semantic search |
|
||||
| Graph DB | Neo4j | 5.x | Relationships |
|
||||
| LLM | OpenAI API | latest | Embeddings + reasoning |
|
||||
| REST API | FastAPI | 0.115+ | HTTP interface |
|
||||
| MCP Server | Python MCP SDK | latest | MCP protocol |
|
||||
| Containerization | Docker Compose | latest | Orchestration |
|
||||
| Documentation | Mintlify | latest | Docs site |
|
||||
|
||||
## Next Steps
|
||||
|
||||
1. Initialize Git repository
|
||||
2. Set up Docker Compose configuration
|
||||
3. Configure Supabase migrations (pgvector + tables)
|
||||
4. Deploy Neo4j container
|
||||
5. Implement REST API with FastAPI
|
||||
6. Build MCP server
|
||||
7. Create Mintlify documentation site
|
||||
8. Testing and validation
|
||||
9. Push to git repository
|
||||
|
||||
---
|
||||
|
||||
**Last Updated**: 2025-10-13
|
||||
**Status**: Architecture Design Complete
|
||||
**Next Phase**: Implementation
|
||||
66
PROJECT_REQUIREMENTS.md
Normal file
66
PROJECT_REQUIREMENTS.md
Normal file
@@ -0,0 +1,66 @@
|
||||
# T6 Mem0 v2 - Project Requirements
|
||||
|
||||
## Original User Request
|
||||
|
||||
**Date**: 2025-10-13
|
||||
|
||||
### Core Objectives
|
||||
|
||||
Set up a comprehensive memory system with the following capabilities:
|
||||
- **MCP Server Integration**: Serve as an MCP server for Claude and other LLM-based systems
|
||||
- **REST API Access**: Enable memory storage and retrieval via REST API
|
||||
- **Data Storage**: Use locally running Supabase for primary data storage
|
||||
- **Graph Visualization**: Use Neo4j for storing and visualizing memory relationships
|
||||
- **LLM Integration**: Initial phase with OpenAI, future phase with local Ollama instance
|
||||
|
||||
### Technology Stack
|
||||
|
||||
**Phase 1 (Initial Implementation)**:
|
||||
- mem0.ai as the core memory framework
|
||||
- Supabase (local instance) for vector and structured storage
|
||||
- Neo4j for graph-based memory relationships
|
||||
- OpenAI API for embeddings and LLM capabilities
|
||||
- MCP (Model Context Protocol) server for AI agent integration
|
||||
|
||||
**Phase 2 (Future)**:
|
||||
- Local Ollama integration for LLM independence
|
||||
- Additional local model support
|
||||
|
||||
### Key Requirements
|
||||
|
||||
1. **MCP Server**: Must function as an MCP server that can be used by Claude Code and other LLM systems
|
||||
2. **REST API**: Full REST API for CRUD operations on memories
|
||||
3. **Local Infrastructure**: All data storage must be local (Supabase, Neo4j)
|
||||
4. **Visualization**: Neo4j integration for memory graph visualization
|
||||
5. **Documentation**: Mintlify-based documentation site
|
||||
6. **Version Control**: Git repository at https://git.colsys.tech/klas/t6_mem0_v2
|
||||
|
||||
### Repository Information
|
||||
|
||||
- **Git Remote**: https://git.colsys.tech/klas/t6_mem0_v2
|
||||
- **Username**: klas
|
||||
- **Password**: csjXgew3In
|
||||
|
||||
### Project Phases
|
||||
|
||||
#### Phase 1: Foundation
|
||||
- Research and validate mem0.ai capabilities
|
||||
- Design architecture with Supabase + Neo4j + OpenAI
|
||||
- Implement core memory storage and retrieval
|
||||
- Build MCP server interface
|
||||
- Create REST API endpoints
|
||||
- Set up Mintlify documentation
|
||||
|
||||
#### Phase 2: Local LLM Integration
|
||||
- Integrate Ollama for local model support
|
||||
- Add model switching capabilities
|
||||
- Performance optimization for local models
|
||||
|
||||
### Success Criteria
|
||||
|
||||
- Functional MCP server that Claude Code can use
|
||||
- Working REST API for memory operations
|
||||
- Memories persisted in local Supabase
|
||||
- Graph relationships visible in Neo4j
|
||||
- Complete documentation in Mintlify
|
||||
- All code versioned in git repository
|
||||
192
README.md
Normal file
192
README.md
Normal file
@@ -0,0 +1,192 @@
|
||||
# T6 Mem0 v2 - Memory System for LLM Applications
|
||||
|
||||
Comprehensive memory system based on mem0.ai featuring MCP server integration, REST API, hybrid storage architecture, and AI-powered memory management.
|
||||
|
||||
## Features
|
||||
|
||||
- **MCP Server**: Model Context Protocol integration for Claude Code and other AI tools
|
||||
- **REST API**: Full HTTP API for memory operations (CRUD)
|
||||
- **Hybrid Storage**: Supabase (pgvector) + Neo4j (graph relationships)
|
||||
- **AI-Powered**: OpenAI embeddings and LLM processing
|
||||
- **Multi-Agent Support**: User and agent-specific memory isolation
|
||||
- **Graph Visualization**: Neo4j Browser for relationship exploration
|
||||
- **Docker-Native**: Fully containerized with Docker Compose
|
||||
|
||||
## Architecture
|
||||
|
||||
```
|
||||
Clients (Claude, N8N, Apps)
|
||||
↓
|
||||
MCP Server (8765) + REST API (8080)
|
||||
↓
|
||||
Mem0 Core Library
|
||||
↓
|
||||
Supabase (Vector) + Neo4j (Graph) + OpenAI (LLM)
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Docker and Docker Compose
|
||||
- Existing Supabase instance (PostgreSQL with pgvector)
|
||||
- OpenAI API key
|
||||
- Python 3.11+ (for development)
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
# Clone repository
|
||||
git clone https://git.colsys.tech/klas/t6_mem0_v2
|
||||
cd t6_mem0_v2
|
||||
|
||||
# Configure environment
|
||||
cp .env.example .env
|
||||
# Edit .env with your credentials
|
||||
|
||||
# Start services
|
||||
docker compose up -d
|
||||
|
||||
# Verify health
|
||||
curl http://localhost:8080/v1/health
|
||||
```
|
||||
|
||||
### Configuration
|
||||
|
||||
Create `.env` file:
|
||||
|
||||
```bash
|
||||
# OpenAI
|
||||
OPENAI_API_KEY=sk-...
|
||||
|
||||
# Supabase
|
||||
SUPABASE_CONNECTION_STRING=postgresql://user:pass@172.21.0.12:5432/postgres
|
||||
|
||||
# Neo4j
|
||||
NEO4J_URI=neo4j://neo4j:7687
|
||||
NEO4J_USER=neo4j
|
||||
NEO4J_PASSWORD=your-password
|
||||
|
||||
# API
|
||||
API_KEY=your-secure-api-key
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### REST API
|
||||
|
||||
```bash
|
||||
# Add memory
|
||||
curl -X POST http://localhost:8080/v1/memories/ \
|
||||
-H "Authorization: Bearer YOUR_API_KEY" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"messages":[{"role":"user","content":"I love pizza"}],"user_id":"alice"}'
|
||||
|
||||
# Search memories
|
||||
curl -X GET "http://localhost:8080/v1/memories/search?query=food&user_id=alice" \
|
||||
-H "Authorization: Bearer YOUR_API_KEY"
|
||||
```
|
||||
|
||||
### MCP Server (Claude Code)
|
||||
|
||||
Add to Claude Code configuration:
|
||||
|
||||
```json
|
||||
{
|
||||
"mcpServers": {
|
||||
"t6-mem0": {
|
||||
"url": "http://localhost:8765/mcp/claude/sse/user-123"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
Full documentation available at: `docs/` (Mintlify)
|
||||
|
||||
- [Architecture](ARCHITECTURE.md)
|
||||
- [Project Requirements](PROJECT_REQUIREMENTS.md)
|
||||
- [API Reference](docs/api/)
|
||||
- [Deployment Guide](docs/deployment/)
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
t6_mem0_v2/
|
||||
├── api/ # REST API (FastAPI)
|
||||
├── mcp-server/ # MCP server implementation
|
||||
├── migrations/ # Database migrations
|
||||
├── docker/ # Docker configurations
|
||||
├── docs/ # Mintlify documentation
|
||||
├── tests/ # Test suites
|
||||
└── docker-compose.yml
|
||||
```
|
||||
|
||||
## Technology Stack
|
||||
|
||||
- **Core**: mem0ai library
|
||||
- **Vector DB**: Supabase with pgvector
|
||||
- **Graph DB**: Neo4j 5.x
|
||||
- **LLM**: OpenAI API (Phase 1), Ollama (Phase 2)
|
||||
- **REST API**: FastAPI
|
||||
- **MCP**: Python MCP SDK
|
||||
- **Container**: Docker & Docker Compose
|
||||
|
||||
## Roadmap
|
||||
|
||||
### Phase 1: Foundation (Current)
|
||||
- ✅ Architecture design
|
||||
- ⏳ REST API implementation
|
||||
- ⏳ MCP server implementation
|
||||
- ⏳ Supabase integration
|
||||
- ⏳ Neo4j integration
|
||||
- ⏳ Documentation site
|
||||
|
||||
### Phase 2: Local LLM
|
||||
- Local Ollama integration
|
||||
- Model switching capabilities
|
||||
- Performance optimization
|
||||
|
||||
### Phase 3: Advanced Features
|
||||
- Memory versioning
|
||||
- Advanced graph queries
|
||||
- Multi-modal memory support
|
||||
- Analytics dashboard
|
||||
|
||||
## Development
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Run tests
|
||||
pytest tests/
|
||||
|
||||
# Format code
|
||||
black .
|
||||
ruff check .
|
||||
|
||||
# Run locally (development)
|
||||
python -m api.main
|
||||
```
|
||||
|
||||
## Contributing
|
||||
|
||||
This is a private project. For issues or suggestions, contact the maintainer.
|
||||
|
||||
## License
|
||||
|
||||
Proprietary - All rights reserved
|
||||
|
||||
## Support
|
||||
|
||||
- Repository: https://git.colsys.tech/klas/t6_mem0_v2
|
||||
- Documentation: See `docs/` directory
|
||||
- Issues: Contact maintainer
|
||||
|
||||
---
|
||||
|
||||
**Status**: In Development
|
||||
**Version**: 0.1.0
|
||||
**Last Updated**: 2025-10-13
|
||||
Reference in New Issue
Block a user