Complete implementation: REST API, MCP server, and documentation
Implementation Summary:
- REST API with FastAPI (complete CRUD operations)
- MCP Server with Python MCP SDK (7 tools)
- Supabase migrations (pgvector setup)
- Docker Compose orchestration
- Mintlify documentation site
- Environment configuration
- Shared config module
REST API Features:
- POST /v1/memories/ - Add memory
- GET /v1/memories/search - Semantic search
- GET /v1/memories/{id} - Get memory
- GET /v1/memories/user/{user_id} - User memories
- PATCH /v1/memories/{id} - Update memory
- DELETE /v1/memories/{id} - Delete memory
- GET /v1/health - Health check
- GET /v1/stats - Statistics
- Bearer token authentication
- OpenAPI documentation
MCP Server Tools:
- add_memory - Add from messages
- search_memories - Semantic search
- get_memory - Retrieve by ID
- get_all_memories - List all
- update_memory - Update content
- delete_memory - Delete by ID
- delete_all_memories - Bulk delete
Infrastructure:
- Neo4j 5.26 with APOC/GDS
- Supabase pgvector integration
- Docker network: localai
- Health checks and monitoring
- Structured logging
Documentation:
- Introduction page
- Quickstart guide
- Architecture deep dive
- Mintlify configuration
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
168
docs/introduction.mdx
Normal file
168
docs/introduction.mdx
Normal file
@@ -0,0 +1,168 @@
|
||||
---
|
||||
title: Introduction
|
||||
description: 'Welcome to T6 Mem0 v2 - Memory System for LLM Applications'
|
||||
---
|
||||
|
||||
<img
|
||||
className="block dark:hidden"
|
||||
src="/images/hero-light.svg"
|
||||
alt="Hero Light"
|
||||
/>
|
||||
<img
|
||||
className="hidden dark:block"
|
||||
src="/images/hero-dark.svg"
|
||||
alt="Hero Dark"
|
||||
/>
|
||||
|
||||
## What is T6 Mem0 v2?
|
||||
|
||||
T6 Mem0 v2 is a comprehensive memory system for LLM applications built on **mem0.ai**, featuring:
|
||||
|
||||
- 🔌 **MCP Server Integration** - Native Model Context Protocol support for Claude Code and AI tools
|
||||
- 🌐 **REST API** - Full HTTP API for memory operations
|
||||
- 🗄️ **Hybrid Storage** - Supabase (vector) + Neo4j (graph) for optimal performance
|
||||
- 🤖 **AI-Powered** - OpenAI embeddings with 26% accuracy improvement
|
||||
- 📊 **Graph Visualization** - Explore memory relationships in Neo4j Browser
|
||||
- 🐳 **Docker-Native** - Fully containerized deployment
|
||||
|
||||
## Key Features
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card
|
||||
title="Semantic Memory Search"
|
||||
icon="magnifying-glass"
|
||||
href="/api-reference/memories/search"
|
||||
>
|
||||
Find relevant memories using AI-powered semantic similarity
|
||||
</Card>
|
||||
<Card
|
||||
title="MCP Integration"
|
||||
icon="plug"
|
||||
href="/mcp/introduction"
|
||||
>
|
||||
Use as MCP server with Claude Code, Cursor, and other AI tools
|
||||
</Card>
|
||||
<Card
|
||||
title="Graph Relationships"
|
||||
icon="diagram-project"
|
||||
href="/setup/neo4j"
|
||||
>
|
||||
Visualize and explore memory connections with Neo4j
|
||||
</Card>
|
||||
<Card
|
||||
title="Multi-Agent Support"
|
||||
icon="users"
|
||||
href="/api-reference/introduction"
|
||||
>
|
||||
Isolate memories by user, agent, or run identifiers
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Architecture
|
||||
|
||||
T6 Mem0 v2 uses a **hybrid storage architecture** for optimal performance:
|
||||
|
||||
```
|
||||
┌──────────────────────────────────┐
|
||||
│ Clients (Claude, N8N, Apps) │
|
||||
└──────────────┬───────────────────┘
|
||||
│
|
||||
┌──────────────┴───────────────────┐
|
||||
│ MCP Server (8765) + REST (8080) │
|
||||
└──────────────┬───────────────────┘
|
||||
│
|
||||
┌──────────────┴───────────────────┐
|
||||
│ Mem0 Core Library │
|
||||
└──────────────┬───────────────────┘
|
||||
│
|
||||
┌──────────┴──────────┐
|
||||
│ │
|
||||
┌───┴──────┐ ┌──────┴─────┐
|
||||
│ Supabase │ │ Neo4j │
|
||||
│ (Vector) │ │ (Graph) │
|
||||
└──────────┘ └────────────┘
|
||||
```
|
||||
|
||||
### Storage Layers
|
||||
|
||||
- **Vector Store (Supabase)**: Semantic similarity search with pgvector
|
||||
- **Graph Store (Neo4j)**: Relationship modeling between memories
|
||||
- **Key-Value Store (PostgreSQL JSONB)**: Flexible metadata storage
|
||||
|
||||
## Performance
|
||||
|
||||
Based on mem0.ai research:
|
||||
|
||||
- **26% higher accuracy** compared to baseline OpenAI
|
||||
- **91% lower latency** than full-context approaches
|
||||
- **90% token cost savings** through selective retrieval
|
||||
|
||||
## Use Cases
|
||||
|
||||
<AccordionGroup>
|
||||
<Accordion icon="comment" title="Conversational AI">
|
||||
Maintain context across conversations, remember user preferences, and provide personalized responses
|
||||
</Accordion>
|
||||
<Accordion icon="robot" title="AI Agents">
|
||||
Give agents long-term memory, enable learning from past interactions, and improve decision-making
|
||||
</Accordion>
|
||||
<Accordion icon="headset" title="Customer Support">
|
||||
Remember customer history, track issues across sessions, and provide consistent support
|
||||
</Accordion>
|
||||
<Accordion icon="graduation-cap" title="Educational Tools">
|
||||
Track learning progress, adapt to user knowledge level, and personalize content delivery
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Quick Links
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card
|
||||
title="Quickstart"
|
||||
icon="rocket"
|
||||
href="/quickstart"
|
||||
>
|
||||
Get up and running in 5 minutes
|
||||
</Card>
|
||||
<Card
|
||||
title="Architecture Deep Dive"
|
||||
icon="sitemap"
|
||||
href="/architecture"
|
||||
>
|
||||
Understand the system design
|
||||
</Card>
|
||||
<Card
|
||||
title="API Reference"
|
||||
icon="code"
|
||||
href="/api-reference/introduction"
|
||||
>
|
||||
Explore the REST API
|
||||
</Card>
|
||||
<Card
|
||||
title="MCP Integration"
|
||||
icon="link"
|
||||
href="/mcp/introduction"
|
||||
>
|
||||
Connect with Claude Code
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
## Technology Stack
|
||||
|
||||
- **Core**: mem0ai library
|
||||
- **Vector DB**: Supabase with pgvector
|
||||
- **Graph DB**: Neo4j 5.x
|
||||
- **LLM**: OpenAI API (Phase 1), Ollama (Phase 2)
|
||||
- **REST API**: FastAPI + Pydantic
|
||||
- **MCP**: Python MCP SDK
|
||||
- **Container**: Docker & Docker Compose
|
||||
|
||||
## Support & Community
|
||||
|
||||
- **Repository**: [git.colsys.tech/klas/t6_mem0_v2](https://git.colsys.tech/klas/t6_mem0_v2)
|
||||
- **mem0.ai**: [Official mem0 website](https://mem0.ai)
|
||||
- **Issues**: Contact maintainer
|
||||
|
||||
---
|
||||
|
||||
Ready to get started? Continue to the [Quickstart Guide](/quickstart).
|
||||
Reference in New Issue
Block a user