Implementation Summary:
- REST API with FastAPI (complete CRUD operations)
- MCP Server with Python MCP SDK (7 tools)
- Supabase migrations (pgvector setup)
- Docker Compose orchestration
- Mintlify documentation site
- Environment configuration
- Shared config module
REST API Features:
- POST /v1/memories/ - Add memory
- GET /v1/memories/search - Semantic search
- GET /v1/memories/{id} - Get memory
- GET /v1/memories/user/{user_id} - User memories
- PATCH /v1/memories/{id} - Update memory
- DELETE /v1/memories/{id} - Delete memory
- GET /v1/health - Health check
- GET /v1/stats - Statistics
- Bearer token authentication
- OpenAPI documentation
MCP Server Tools:
- add_memory - Add from messages
- search_memories - Semantic search
- get_memory - Retrieve by ID
- get_all_memories - List all
- update_memory - Update content
- delete_memory - Delete by ID
- delete_all_memories - Bulk delete
Infrastructure:
- Neo4j 5.26 with APOC/GDS
- Supabase pgvector integration
- Docker network: localai
- Health checks and monitoring
- Structured logging
Documentation:
- Introduction page
- Quickstart guide
- Architecture deep dive
- Mintlify configuration
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
169 lines
5.0 KiB
Plaintext
169 lines
5.0 KiB
Plaintext
---
|
|
title: Introduction
|
|
description: 'Welcome to T6 Mem0 v2 - Memory System for LLM Applications'
|
|
---
|
|
|
|
<img
|
|
className="block dark:hidden"
|
|
src="/images/hero-light.svg"
|
|
alt="Hero Light"
|
|
/>
|
|
<img
|
|
className="hidden dark:block"
|
|
src="/images/hero-dark.svg"
|
|
alt="Hero Dark"
|
|
/>
|
|
|
|
## What is T6 Mem0 v2?
|
|
|
|
T6 Mem0 v2 is a comprehensive memory system for LLM applications built on **mem0.ai**, featuring:
|
|
|
|
- 🔌 **MCP Server Integration** - Native Model Context Protocol support for Claude Code and AI tools
|
|
- 🌐 **REST API** - Full HTTP API for memory operations
|
|
- 🗄️ **Hybrid Storage** - Supabase (vector) + Neo4j (graph) for optimal performance
|
|
- 🤖 **AI-Powered** - OpenAI embeddings with 26% accuracy improvement
|
|
- 📊 **Graph Visualization** - Explore memory relationships in Neo4j Browser
|
|
- 🐳 **Docker-Native** - Fully containerized deployment
|
|
|
|
## Key Features
|
|
|
|
<CardGroup cols={2}>
|
|
<Card
|
|
title="Semantic Memory Search"
|
|
icon="magnifying-glass"
|
|
href="/api-reference/memories/search"
|
|
>
|
|
Find relevant memories using AI-powered semantic similarity
|
|
</Card>
|
|
<Card
|
|
title="MCP Integration"
|
|
icon="plug"
|
|
href="/mcp/introduction"
|
|
>
|
|
Use as MCP server with Claude Code, Cursor, and other AI tools
|
|
</Card>
|
|
<Card
|
|
title="Graph Relationships"
|
|
icon="diagram-project"
|
|
href="/setup/neo4j"
|
|
>
|
|
Visualize and explore memory connections with Neo4j
|
|
</Card>
|
|
<Card
|
|
title="Multi-Agent Support"
|
|
icon="users"
|
|
href="/api-reference/introduction"
|
|
>
|
|
Isolate memories by user, agent, or run identifiers
|
|
</Card>
|
|
</CardGroup>
|
|
|
|
## Architecture
|
|
|
|
T6 Mem0 v2 uses a **hybrid storage architecture** for optimal performance:
|
|
|
|
```
|
|
┌──────────────────────────────────┐
|
|
│ Clients (Claude, N8N, Apps) │
|
|
└──────────────┬───────────────────┘
|
|
│
|
|
┌──────────────┴───────────────────┐
|
|
│ MCP Server (8765) + REST (8080) │
|
|
└──────────────┬───────────────────┘
|
|
│
|
|
┌──────────────┴───────────────────┐
|
|
│ Mem0 Core Library │
|
|
└──────────────┬───────────────────┘
|
|
│
|
|
┌──────────┴──────────┐
|
|
│ │
|
|
┌───┴──────┐ ┌──────┴─────┐
|
|
│ Supabase │ │ Neo4j │
|
|
│ (Vector) │ │ (Graph) │
|
|
└──────────┘ └────────────┘
|
|
```
|
|
|
|
### Storage Layers
|
|
|
|
- **Vector Store (Supabase)**: Semantic similarity search with pgvector
|
|
- **Graph Store (Neo4j)**: Relationship modeling between memories
|
|
- **Key-Value Store (PostgreSQL JSONB)**: Flexible metadata storage
|
|
|
|
## Performance
|
|
|
|
Based on mem0.ai research:
|
|
|
|
- **26% higher accuracy** compared to baseline OpenAI
|
|
- **91% lower latency** than full-context approaches
|
|
- **90% token cost savings** through selective retrieval
|
|
|
|
## Use Cases
|
|
|
|
<AccordionGroup>
|
|
<Accordion icon="comment" title="Conversational AI">
|
|
Maintain context across conversations, remember user preferences, and provide personalized responses
|
|
</Accordion>
|
|
<Accordion icon="robot" title="AI Agents">
|
|
Give agents long-term memory, enable learning from past interactions, and improve decision-making
|
|
</Accordion>
|
|
<Accordion icon="headset" title="Customer Support">
|
|
Remember customer history, track issues across sessions, and provide consistent support
|
|
</Accordion>
|
|
<Accordion icon="graduation-cap" title="Educational Tools">
|
|
Track learning progress, adapt to user knowledge level, and personalize content delivery
|
|
</Accordion>
|
|
</AccordionGroup>
|
|
|
|
## Quick Links
|
|
|
|
<CardGroup cols={2}>
|
|
<Card
|
|
title="Quickstart"
|
|
icon="rocket"
|
|
href="/quickstart"
|
|
>
|
|
Get up and running in 5 minutes
|
|
</Card>
|
|
<Card
|
|
title="Architecture Deep Dive"
|
|
icon="sitemap"
|
|
href="/architecture"
|
|
>
|
|
Understand the system design
|
|
</Card>
|
|
<Card
|
|
title="API Reference"
|
|
icon="code"
|
|
href="/api-reference/introduction"
|
|
>
|
|
Explore the REST API
|
|
</Card>
|
|
<Card
|
|
title="MCP Integration"
|
|
icon="link"
|
|
href="/mcp/introduction"
|
|
>
|
|
Connect with Claude Code
|
|
</Card>
|
|
</CardGroup>
|
|
|
|
## Technology Stack
|
|
|
|
- **Core**: mem0ai library
|
|
- **Vector DB**: Supabase with pgvector
|
|
- **Graph DB**: Neo4j 5.x
|
|
- **LLM**: OpenAI API (Phase 1), Ollama (Phase 2)
|
|
- **REST API**: FastAPI + Pydantic
|
|
- **MCP**: Python MCP SDK
|
|
- **Container**: Docker & Docker Compose
|
|
|
|
## Support & Community
|
|
|
|
- **Repository**: [git.colsys.tech/klas/t6_mem0_v2](https://git.colsys.tech/klas/t6_mem0_v2)
|
|
- **mem0.ai**: [Official mem0 website](https://mem0.ai)
|
|
- **Issues**: Contact maintainer
|
|
|
|
---
|
|
|
|
Ready to get started? Continue to the [Quickstart Guide](/quickstart).
|