Ollama embeddings tested and Docs ready (#1384)

This commit is contained in:
Dev Khant
2024-06-06 22:59:01 +05:30
committed by GitHub
parent a5b2381458
commit 8ca01918e5
2 changed files with 40 additions and 0 deletions

View File

@@ -15,6 +15,7 @@ Embedchain supports several embedding models from the following providers:
<Card title="Vertex AI" href="#vertex-ai"></Card>
<Card title="NVIDIA AI" href="#nvidia-ai"></Card>
<Card title="Cohere" href="#cohere"></Card>
<Card title="Ollama" href="#ollama"></Card>
</CardGroup>
## OpenAI
@@ -357,4 +358,31 @@ embedder:
vector_dimension: 768
```
</CodeGroup>
## Ollama
Ollama enables the use of embedding models, allowing you to generate high-quality embeddings directly on your local machine. Make sure to install [Ollama](https://ollama.com/download) and keep it running before using the embedding model.
You can find the list of models at [Ollama Embedding Models](https://ollama.com/blog/embedding-models).
Below is an example of how to use embedding model Ollama:
<CodeGroup>
```python main.py
import os
from embedchain import App
# load embedding model configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
embedder:
provider: ollama
config:
model: 'all-minilm:latest'
```
</CodeGroup>

View File

@@ -1,16 +1,28 @@
import logging
from typing import Optional
try:
import ollama
except ImportError:
raise ImportError("Ollama Embedder requires extra dependencies. Install with `pip install ollama`") from None
from langchain_community.embeddings import OllamaEmbeddings
from embedchain.config import OllamaEmbedderConfig
from embedchain.embedder.base import BaseEmbedder
from embedchain.models import VectorDimensions
logger = logging.getLogger(__name__)
class OllamaEmbedder(BaseEmbedder):
def __init__(self, config: Optional[OllamaEmbedderConfig] = None):
super().__init__(config=config)
local_models = ollama.list()["models"]
if not any(model.get("name") == self.config.model for model in local_models):
logger.info(f"Pulling {self.config.model} from Ollama!")
ollama.pull(self.config.model)
embeddings = OllamaEmbeddings(model=self.config.model, base_url=self.config.base_url)
embedding_fn = BaseEmbedder._langchain_default_concept(embeddings)
self.set_embedding_fn(embedding_fn=embedding_fn)