diff --git a/docs/components/embedding-models.mdx b/docs/components/embedding-models.mdx
index 4e362fb3..af24b89c 100644
--- a/docs/components/embedding-models.mdx
+++ b/docs/components/embedding-models.mdx
@@ -15,6 +15,7 @@ Embedchain supports several embedding models from the following providers:
+
## OpenAI
@@ -357,4 +358,31 @@ embedder:
vector_dimension: 768
```
+
+
+## Ollama
+
+Ollama enables the use of embedding models, allowing you to generate high-quality embeddings directly on your local machine. Make sure to install [Ollama](https://ollama.com/download) and keep it running before using the embedding model.
+
+You can find the list of models at [Ollama Embedding Models](https://ollama.com/blog/embedding-models).
+
+Below is an example of how to use embedding model Ollama:
+
+
+
+```python main.py
+import os
+from embedchain import App
+
+# load embedding model configuration from config.yaml file
+app = App.from_config(config_path="config.yaml")
+```
+
+```yaml config.yaml
+embedder:
+ provider: ollama
+ config:
+ model: 'all-minilm:latest'
+```
+
\ No newline at end of file
diff --git a/embedchain/embedder/ollama.py b/embedchain/embedder/ollama.py
index 41001114..a70e402e 100644
--- a/embedchain/embedder/ollama.py
+++ b/embedchain/embedder/ollama.py
@@ -1,16 +1,28 @@
+import logging
from typing import Optional
+try:
+ import ollama
+except ImportError:
+ raise ImportError("Ollama Embedder requires extra dependencies. Install with `pip install ollama`") from None
+
from langchain_community.embeddings import OllamaEmbeddings
from embedchain.config import OllamaEmbedderConfig
from embedchain.embedder.base import BaseEmbedder
from embedchain.models import VectorDimensions
+logger = logging.getLogger(__name__)
+
class OllamaEmbedder(BaseEmbedder):
def __init__(self, config: Optional[OllamaEmbedderConfig] = None):
super().__init__(config=config)
+ local_models = ollama.list()["models"]
+ if not any(model.get("name") == self.config.model for model in local_models):
+ logger.info(f"Pulling {self.config.model} from Ollama!")
+ ollama.pull(self.config.model)
embeddings = OllamaEmbeddings(model=self.config.model, base_url=self.config.base_url)
embedding_fn = BaseEmbedder._langchain_default_concept(embeddings)
self.set_embedding_fn(embedding_fn=embedding_fn)