Add config option for vertex embedding tasks (#2266)
This commit is contained in:
@@ -57,7 +57,10 @@ Here's a comprehensive list of all parameters that can be used across different
|
||||
| `model_kwargs` | Key-Value arguments for the Huggingface embedding model |
|
||||
| `azure_kwargs` | Key-Value arguments for the AzureOpenAI embedding model |
|
||||
| `openai_base_url` | Base URL for OpenAI API | OpenAI |
|
||||
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file for VertexAI |
|
||||
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file for VertexAI | VertexAI |
|
||||
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | VertexAI |
|
||||
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | VertexAI |
|
||||
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | VertexAI |
|
||||
|
||||
|
||||
## Supported Embedding Models
|
||||
|
||||
@@ -16,7 +16,10 @@ config = {
|
||||
"embedder": {
|
||||
"provider": "vertexai",
|
||||
"config": {
|
||||
"model": "text-embedding-004"
|
||||
"model": "text-embedding-004",
|
||||
"memory_add_embedding_type": "RETRIEVAL_DOCUMENT",
|
||||
"memory_update_embedding_type": "RETRIEVAL_DOCUMENT",
|
||||
"memory_search_embedding_type": "RETRIEVAL_QUERY"
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -24,7 +27,14 @@ config = {
|
||||
m = Memory.from_config(config)
|
||||
m.add("I'm visiting Paris", user_id="john")
|
||||
```
|
||||
|
||||
The embedding types can be one of the following:
|
||||
- SEMANTIC_SIMILARITY
|
||||
- CLASSIFICATION
|
||||
- CLUSTERING
|
||||
- RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION
|
||||
- CODE_RETRIEVAL_QUERY
|
||||
Check out the [Vertex AI documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/task-types#supported_task_types) for more information.
|
||||
|
||||
### Config
|
||||
|
||||
Here are the parameters available for configuring the Vertex AI embedder:
|
||||
@@ -34,3 +44,6 @@ Here are the parameters available for configuring the Vertex AI embedder:
|
||||
| `model` | The name of the Vertex AI embedding model to use | `text-embedding-004` |
|
||||
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file | `None` |
|
||||
| `embedding_dims` | Dimensions of the embedding model | `256` |
|
||||
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | `RETRIEVAL_DOCUMENT` |
|
||||
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | `RETRIEVAL_DOCUMENT` |
|
||||
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | `RETRIEVAL_QUERY` |
|
||||
|
||||
Reference in New Issue
Block a user