Add config option for vertex embedding tasks (#2266)

This commit is contained in:
Wonbin Kim
2025-02-28 18:50:05 +09:00
committed by GitHub
parent 8143f86be6
commit 6acb00731d
14 changed files with 141 additions and 48 deletions

View File

@@ -57,7 +57,10 @@ Here's a comprehensive list of all parameters that can be used across different
| `model_kwargs` | Key-Value arguments for the Huggingface embedding model |
| `azure_kwargs` | Key-Value arguments for the AzureOpenAI embedding model |
| `openai_base_url` | Base URL for OpenAI API | OpenAI |
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file for VertexAI |
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file for VertexAI | VertexAI |
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | VertexAI |
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | VertexAI |
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | VertexAI |
## Supported Embedding Models

View File

@@ -16,7 +16,10 @@ config = {
"embedder": {
"provider": "vertexai",
"config": {
"model": "text-embedding-004"
"model": "text-embedding-004",
"memory_add_embedding_type": "RETRIEVAL_DOCUMENT",
"memory_update_embedding_type": "RETRIEVAL_DOCUMENT",
"memory_search_embedding_type": "RETRIEVAL_QUERY"
}
}
}
@@ -24,7 +27,14 @@ config = {
m = Memory.from_config(config)
m.add("I'm visiting Paris", user_id="john")
```
The embedding types can be one of the following:
- SEMANTIC_SIMILARITY
- CLASSIFICATION
- CLUSTERING
- RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION
- CODE_RETRIEVAL_QUERY
Check out the [Vertex AI documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/task-types#supported_task_types) for more information.
### Config
Here are the parameters available for configuring the Vertex AI embedder:
@@ -34,3 +44,6 @@ Here are the parameters available for configuring the Vertex AI embedder:
| `model` | The name of the Vertex AI embedding model to use | `text-embedding-004` |
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file | `None` |
| `embedding_dims` | Dimensions of the embedding model | `256` |
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | `RETRIEVAL_DOCUMENT` |
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | `RETRIEVAL_DOCUMENT` |
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | `RETRIEVAL_QUERY` |

View File

@@ -27,6 +27,9 @@ class BaseEmbedderConfig(ABC):
http_client_proxies: Optional[Union[Dict, str]] = None,
# VertexAI specific
vertex_credentials_json: Optional[str] = None,
memory_add_embedding_type: Optional[str] = None,
memory_update_embedding_type: Optional[str] = None,
memory_search_embedding_type: Optional[str] = None,
):
"""
Initializes a configuration class instance for the Embeddings.
@@ -47,6 +50,14 @@ class BaseEmbedderConfig(ABC):
:type azure_kwargs: Optional[Dict[str, Any]], defaults a dict inside init
:param http_client_proxies: The proxy server settings used to create self.http_client, defaults to None
:type http_client_proxies: Optional[Dict | str], optional
:param vertex_credentials_json: The path to the Vertex AI credentials JSON file, defaults to None
:type vertex_credentials_json: Optional[str], optional
:param memory_add_embedding_type: The type of embedding to use for the add memory action, defaults to None
:type memory_add_embedding_type: Optional[str], optional
:param memory_update_embedding_type: The type of embedding to use for the update memory action, defaults to None
:type memory_update_embedding_type: Optional[str], optional
:param memory_search_embedding_type: The type of embedding to use for the search memory action, defaults to None
:type memory_search_embedding_type: Optional[str], optional
"""
self.model = model
@@ -68,3 +79,6 @@ class BaseEmbedderConfig(ABC):
# VertexAI specific
self.vertex_credentials_json = vertex_credentials_json
self.memory_add_embedding_type = memory_add_embedding_type
self.memory_update_embedding_type = memory_update_embedding_type
self.memory_search_embedding_type = memory_search_embedding_type

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
from openai import AzureOpenAI
@@ -26,13 +26,13 @@ class AzureOpenAIEmbedding(EmbeddingBase):
default_headers=default_headers,
)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using OpenAI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Optional
from typing import Literal, Optional
from mem0.configs.embeddings.base import BaseEmbedderConfig
@@ -18,13 +18,13 @@ class EmbeddingBase(ABC):
self.config = config
@abstractmethod
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]]):
"""
Get the embedding for the given text.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
import google.generativeai as genai
@@ -18,11 +18,12 @@ class GoogleGenAIEmbedding(EmbeddingBase):
genai.configure(api_key=api_key)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Google Generative AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,4 +1,4 @@
from typing import Optional
from typing import Literal, Optional
from sentence_transformers import SentenceTransformer
@@ -16,13 +16,13 @@ class HuggingFaceEmbedding(EmbeddingBase):
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Hugging Face.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,6 +1,6 @@
import subprocess
import sys
from typing import Optional
from typing import Literal, Optional
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
@@ -39,13 +39,13 @@ class OllamaEmbedding(EmbeddingBase):
if not any(model.get("name") == self.config.model for model in local_models):
self.client.pull(self.config.model)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Ollama.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
from openai import OpenAI
@@ -18,13 +18,13 @@ class OpenAIEmbedding(EmbeddingBase):
base_url = self.config.openai_base_url or os.getenv("OPENAI_API_BASE")
self.client = OpenAI(api_key=api_key, base_url=base_url)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using OpenAI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,5 +1,5 @@
import os
from typing import Optional
from typing import Literal, Optional
from together import Together
@@ -17,13 +17,13 @@ class TogetherEmbedding(EmbeddingBase):
self.config.embedding_dims = self.config.embedding_dims or 768
self.client = Together(api_key=api_key)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using OpenAI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""

View File

@@ -1,7 +1,7 @@
import os
from typing import Optional
from typing import Literal, Optional
from vertexai.language_models import TextEmbeddingModel
from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
@@ -13,7 +13,13 @@ class VertexAIEmbedding(EmbeddingBase):
self.config.model = self.config.model or "text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or 256
self.embedding_types = {
"add": self.config.memory_add_embedding_type or "RETRIEVAL_DOCUMENT",
"update": self.config.memory_update_embedding_type or "RETRIEVAL_DOCUMENT",
"search": self.config.memory_search_embedding_type or "RETRIEVAL_QUERY"
}
credentials_path = self.config.vertex_credentials_json
if credentials_path:
@@ -25,16 +31,24 @@ class VertexAIEmbedding(EmbeddingBase):
self.model = TextEmbeddingModel.from_pretrained(self.config.model)
def embed(self, text):
def embed(self, text, memory_action:Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Vertex AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality=self.config.embedding_dims)
embedding_type = "SEMANTIC_SIMILARITY"
if memory_action is not None:
if memory_action not in self.embedding_types:
raise ValueError(f"Invalid memory action: {memory_action}")
embedding_type = self.embedding_types[memory_action]
text_input = TextEmbeddingInput(text=text, task_type=embedding_type)
embeddings = self.model.get_embeddings(texts=[text_input], output_dimensionality=self.config.embedding_dims)
return embeddings[0].values

View File

@@ -9,7 +9,7 @@ from typing import Any, Dict
import pytz
from pydantic import ValidationError
from mem0.memory.utils import parse_vision_messages
from mem0.configs.base import MemoryConfig, MemoryItem
from mem0.configs.prompts import get_update_memory_messages
from mem0.memory.base import MemoryBase
@@ -19,6 +19,7 @@ from mem0.memory.telemetry import capture_event
from mem0.memory.utils import (
get_fact_retrieval_messages,
parse_messages,
parse_vision_messages,
remove_code_blocks,
)
from mem0.utils.factory import EmbedderFactory, LlmFactory, VectorStoreFactory
@@ -167,7 +168,7 @@ class Memory(MemoryBase):
retrieved_old_memory = []
new_message_embeddings = {}
for new_mem in new_retrieved_facts:
messages_embeddings = self.embedding_model.embed(new_mem)
messages_embeddings = self.embedding_model.embed(new_mem, "add")
new_message_embeddings[new_mem] = messages_embeddings
existing_memories = self.vector_store.search(
query=messages_embeddings,
@@ -446,7 +447,7 @@ class Memory(MemoryBase):
return original_memories
def _search_vector_store(self, query, filters, limit):
embeddings = self.embedding_model.embed(query)
embeddings = self.embedding_model.embed(query, "search")
memories = self.vector_store.search(query=embeddings, limit=limit, filters=filters)
excluded_keys = {
@@ -494,7 +495,7 @@ class Memory(MemoryBase):
"""
capture_event("mem0.update", self, {"memory_id": memory_id})
existing_embeddings = {data: self.embedding_model.embed(data)}
existing_embeddings = {data: self.embedding_model.embed(data, "update")}
self._update_memory(memory_id, data, existing_embeddings)
return {"message": "Memory updated successfully!"}
@@ -562,7 +563,7 @@ class Memory(MemoryBase):
if data in existing_embeddings:
embeddings = existing_embeddings[data]
else:
embeddings = self.embedding_model.embed(data)
embeddings = self.embedding_model.embed(data, "add")
memory_id = str(uuid.uuid4())
metadata = metadata or {}
metadata["data"] = data
@@ -603,7 +604,7 @@ class Memory(MemoryBase):
if data in existing_embeddings:
embeddings = existing_embeddings[data]
else:
embeddings = self.embedding_model.embed(data)
embeddings = self.embedding_model.embed(data, "update")
self.vector_store.update(
vector_id=memory_id,
vector=embeddings,

View File

@@ -1,5 +1,7 @@
import pytest
from unittest.mock import Mock, patch
import pytest
from mem0.embeddings.vertexai import VertexAIEmbedding
@@ -20,13 +22,23 @@ def mock_os_environ():
@pytest.fixture
def mock_config():
with patch("mem0.configs.embeddings.base.BaseEmbedderConfig") as mock_config:
mock_config.vertex_credentials_json = None
mock_config.return_value.vertex_credentials_json = "/path/to/credentials.json"
yield mock_config
@pytest.fixture
def mock_embedding_types():
return ["SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "QUESTION_ANSWERING", "FACT_VERIFICATION", "CODE_RETRIEVAL_QUERY"]
@pytest.fixture
def mock_text_embedding_input():
with patch("mem0.embeddings.vertexai.TextEmbeddingInput") as mock_input:
yield mock_input
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
def test_embed_default_model(mock_text_embedding_model, mock_os_environ, mock_config):
mock_config.vertex_credentials_json = "/path/to/credentials.json"
def test_embed_default_model(mock_text_embedding_model, mock_os_environ, mock_config, mock_text_embedding_input):
mock_config.return_value.model = "text-embedding-004"
mock_config.return_value.embedding_dims = 256
@@ -37,16 +49,16 @@ def test_embed_default_model(mock_text_embedding_model, mock_os_environ, mock_co
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [mock_embedding]
embedder.embed("Hello world")
mock_text_embedding_input.assert_called_once_with(text="Hello world", task_type="SEMANTIC_SIMILARITY")
mock_text_embedding_model.from_pretrained.assert_called_once_with("text-embedding-004")
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_once_with(
texts=["Hello world"], output_dimensionality=256
texts=[mock_text_embedding_input("Hello world")], output_dimensionality=256
)
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_config):
mock_config.vertex_credentials_json = "/path/to/credentials.json"
def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_config, mock_text_embedding_input):
mock_config.return_value.model = "custom-embedding-model"
mock_config.return_value.embedding_dims = 512
@@ -58,18 +70,42 @@ def test_embed_custom_model(mock_text_embedding_model, mock_os_environ, mock_con
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.return_value = [mock_embedding]
result = embedder.embed("Test embedding")
mock_text_embedding_input.assert_called_once_with(text="Test embedding", task_type="SEMANTIC_SIMILARITY")
mock_text_embedding_model.from_pretrained.assert_called_with("custom-embedding-model")
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_once_with(
texts=["Test embedding"], output_dimensionality=512
texts=[mock_text_embedding_input("Test embedding")], output_dimensionality=512
)
assert result == [0.4, 0.5, 0.6]
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
def test_embed_with_memory_action(mock_text_embedding_model, mock_os_environ, mock_config, mock_embedding_types, mock_text_embedding_input):
mock_config.return_value.model = "text-embedding-004"
mock_config.return_value.embedding_dims = 256
for embedding_type in mock_embedding_types:
mock_config.return_value.memory_add_embedding_type = embedding_type
mock_config.return_value.memory_update_embedding_type = embedding_type
mock_config.return_value.memory_search_embedding_type = embedding_type
config = mock_config()
embedder = VertexAIEmbedding(config)
mock_text_embedding_model.from_pretrained.assert_called_with("text-embedding-004")
for memory_action in ["add", "update", "search"]:
embedder.embed("Hello world", memory_action=memory_action)
mock_text_embedding_input.assert_called_with(text="Hello world", task_type=embedding_type)
mock_text_embedding_model.from_pretrained.return_value.get_embeddings.assert_called_with(
texts=[mock_text_embedding_input("Hello world", embedding_type)], output_dimensionality=256
)
@patch("mem0.embeddings.vertexai.os")
def test_credentials_from_environment(mock_os, mock_text_embedding_model, mock_config):
mock_os.getenv.return_value = "/path/to/env/credentials.json"
mock_config.vertex_credentials_json = None
config = mock_config()
VertexAIEmbedding(config)
@@ -90,7 +126,6 @@ def test_missing_credentials(mock_os, mock_text_embedding_model, mock_config):
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
def test_embed_with_different_dimensions(mock_text_embedding_model, mock_os_environ, mock_config):
mock_config.vertex_credentials_json = "/path/to/credentials.json"
mock_config.return_value.embedding_dims = 1024
config = mock_config()
@@ -102,3 +137,15 @@ def test_embed_with_different_dimensions(mock_text_embedding_model, mock_os_envi
result = embedder.embed("Large embedding test")
assert result == [0.1] * 1024
@patch("mem0.embeddings.vertexai.TextEmbeddingModel")
def test_invalid_memory_action(mock_text_embedding_model, mock_config):
mock_config.return_value.model = "text-embedding-004"
mock_config.return_value.embedding_dims = 256
config = mock_config()
embedder = VertexAIEmbedding(config)
with pytest.raises(ValueError):
embedder.embed("Hello world", memory_action="invalid_action")

View File

@@ -119,7 +119,7 @@ def test_search(memory_instance, version, enable_graph):
memory_instance.vector_store.search.assert_called_once_with(
query=[0.1, 0.2, 0.3], limit=100, filters={"user_id": "test_user"}
)
memory_instance.embedding_model.embed.assert_called_once_with("test query")
memory_instance.embedding_model.embed.assert_called_once_with("test query", "search")
if enable_graph:
memory_instance.graph.search.assert_called_once_with("test query", {"user_id": "test_user"}, 100)