50 lines
2.2 KiB
Plaintext
50 lines
2.2 KiB
Plaintext
### Vertex AI
|
|
|
|
To use Google Cloud's Vertex AI for text embedding models, set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable to point to the path of your service account's credentials JSON file. These credentials can be created in the [Google Cloud Console](https://console.cloud.google.com/).
|
|
|
|
### Usage
|
|
|
|
```python
|
|
import os
|
|
from mem0 import Memory
|
|
|
|
# Set the path to your Google Cloud credentials JSON file
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/your/credentials.json"
|
|
os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM
|
|
|
|
config = {
|
|
"embedder": {
|
|
"provider": "vertexai",
|
|
"config": {
|
|
"model": "text-embedding-004",
|
|
"memory_add_embedding_type": "RETRIEVAL_DOCUMENT",
|
|
"memory_update_embedding_type": "RETRIEVAL_DOCUMENT",
|
|
"memory_search_embedding_type": "RETRIEVAL_QUERY"
|
|
}
|
|
}
|
|
}
|
|
|
|
m = Memory.from_config(config)
|
|
m.add("I'm visiting Paris", user_id="john")
|
|
```
|
|
The embedding types can be one of the following:
|
|
- SEMANTIC_SIMILARITY
|
|
- CLASSIFICATION
|
|
- CLUSTERING
|
|
- RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION
|
|
- CODE_RETRIEVAL_QUERY
|
|
Check out the [Vertex AI documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/task-types#supported_task_types) for more information.
|
|
|
|
### Config
|
|
|
|
Here are the parameters available for configuring the Vertex AI embedder:
|
|
|
|
| Parameter | Description | Default Value |
|
|
| ------------------------- | ------------------------------------------------ | -------------------- |
|
|
| `model` | The name of the Vertex AI embedding model to use | `text-embedding-004` |
|
|
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file | `None` |
|
|
| `embedding_dims` | Dimensions of the embedding model | `256` |
|
|
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | `RETRIEVAL_DOCUMENT` |
|
|
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | `RETRIEVAL_DOCUMENT` |
|
|
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | `RETRIEVAL_QUERY` |
|