Update README (#1478)

This commit is contained in:
Deshraj Yadav
2024-07-15 00:16:56 -07:00
committed by GitHub
parent 4ec51f2dd6
commit 34477d4936
2 changed files with 65 additions and 156 deletions

221
README.md
View File

@@ -1,46 +1,76 @@
# Mem0: Long-Term Memory for LLMs
<p align="center">
<img src="docs/images/mem0-bg.png" width="500px" alt="Mem0 Logo">
</p>
<p align="center">
<a href="https://embedchain.ai/slack">
<img src="https://img.shields.io/badge/slack-embedchain-brightgreen.svg?logo=slack" alt="Slack">
</a>
<a href="https://embedchain.ai/discord">
<img src="https://dcbadge.vercel.app/api/server/6PzXDgEjG5?style=flat" alt="Discord">
</a>
<a href="https://twitter.com/mem0ai">
<img src="https://img.shields.io/twitter/follow/mem0ai" alt="Twitter">
</a>
</p>
# Mem0: The Memory Layer for Personalized AI
Mem0 provides a smart, self-improving memory layer for Large Language Models, enabling personalized AI experiences across applications.
## Features
- Persistent memory for users, sessions, and agents
- Self-improving personalization
- Simple API for easy integration
- Cross-platform consistency
## Quick Start
## 🚀 Quick Start
### Installation
```bash
pip install mem0ai
```
## Usage
### Instantiate
### Basic Usage
```python
from mem0 import Memory
# Initialize Mem0
m = Memory()
# Store a memory from any unstructured text
result = m.add("I am working on improving my tennis skills. Suggest some online courses.", user_id="alice", metadata={"category": "hobbies"})
print(result)
# Created memory: Improving her tennis skills. Looking for online suggestions.
# Retrieve memories
all_memories = m.get_all()
print(all_memories)
# Search memories
related_memories = m.search(query="What are Alice's hobbies?", user_id="alice")
print(related_memories)
# Update a memory
result = m.update(memory_id="m1", data="Likes to play tennis on weekends")
print(result)
# Get memory history
history = m.history(memory_id="m1")
print(history)
```
If you want to use Qdrant in server mode, use the following method to instantiate.
## 🔑 Core Features
Run qdrant first:
- **Multi-Level Memory**: User, Session, and AI Agent memory retention
- **Adaptive Personalization**: Continuous improvement based on interactions
- **Developer-Friendly API**: Simple integration into various applications
- **Cross-Platform Consistency**: Uniform behavior across devices
- **Managed Service**: Hassle-free hosted solution
```bash
docker pull qdrant/qdrant
## 📖 Documentation
docker run -p 6333:6333 -p 6334:6334 \
-v $(pwd)/qdrant_storage:/qdrant/storage:z \
qdrant/qdrant
```
For detailed usage instructions and API reference, visit our documentation at [docs.mem0.ai](https://docs.mem0.ai).
Then, instantiate memory with qdrant server:
## 🔧 Advanced Usage
For production environments, you can use Qdrant as a vector store:
```python
from mem0 import Memory
@@ -58,140 +88,19 @@ config = {
m = Memory.from_config(config)
```
### Store a Memory
## 🗺️ Roadmap
```python
m.add("Likes to play cricket over weekend", user_id="alex", metadata={"foo": "bar"})
# Output:
# [
# {
# 'id': 'm1',
# 'event': 'add',
# 'data': 'Likes to play cricket over weekend'
# }
# ]
- Integration with various LLM providers
- Support for LLM frameworks
- Integration with AI Agents frameworks
- Customizable memory creation/update rules
- Hosted platform support
# Similarly, you can store a memory for an agent
m.add("Agent X is best travel agent in Paris", agent_id="agent-x", metadata={"type": "long-term"})
```
## 🙋‍♂️ Support
Join our Slack or Discord community for support and discussions.
If you have any questions, feel free to reach out to us using one of the following methods:
### Retrieve all memories
#### 1. Get all memories
```python
m.get_all()
# Output:
# [
# {
# 'id': 'm1',
# 'text': 'Likes to play cricket over weekend',
# 'metadata': {
# 'data': 'Likes to play cricket over weekend'
# }
# },
# {
# 'id': 'm2',
# 'text': 'Agent X is best travel agent in Paris',
# 'metadata': {
# 'data': 'Agent X is best travel agent in Paris'
# }
# }
# ]
```
#### 2. Get memories for specific user
```python
m.get_all(user_id="alex")
```
#### 3. Get memories for specific agent
```python
m.get_all(agent_id="agent-x")
```
#### 4. Get memories for a user during an agent run
```python
m.get_all(agent_id="agent-x", user_id="alex")
```
### Retrieve a Memory
```python
memory_id = "m1"
m.get(memory_id)
# Output:
# {
# 'id': '1',
# 'text': 'Likes to play cricket over weekend',
# 'metadata': {
# 'data': 'Likes to play cricket over weekend'
# }
# }
```
### Search for related memories
```python
m.search(query="What is my name", user_id="deshraj")
```
### Update a Memory
```python
m.update(memory_id="m1", data="Likes to play tennis")
```
### Get history of a Memory
```python
m.history(memory_id="m1")
# Output:
# [
# {
# 'id': 'h1',
# 'memory_id': 'm1',
# 'prev_value': None,
# 'new_value': 'Likes to play cricket over weekend',
# 'event': 'add',
# 'timestamp': '2024-06-12 21:00:54.466687',
# 'is_deleted': 0
# },
# {
# 'id': 'h2',
# 'memory_id': 'm1',
# 'prev_value': 'Likes to play cricket over weekend',
# 'new_value': 'Likes to play tennis',
# 'event': 'update',
# 'timestamp': '2024-06-12 21:01:17.230943',
# 'is_deleted': 0
# }
# ]
```
### Delete a Memory
#### Delete specific memory
```python
m.delete(memory_id="m1")
```
#### Delete memories for a user or agent
```python
m.delete_all(user_id="alex")
m.delete_all(agent_id="agent-x")
```
#### Delete all Memories
```python
m.reset()
```
## License
[Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)
- [Join our Discord](https://embedchain.ai/discord)
- [Join our Slack](https://embedchain.ai/slack)
- [Follow us on Twitter](https://twitter.com/mem0ai)
- [Email us](mailto:founders@mem0.ai)

BIN
docs/images/mem0-bg.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 565 KiB