diff --git a/README.md b/README.md
index 9aaa0166..0eec5639 100644
--- a/README.md
+++ b/README.md
@@ -1,46 +1,76 @@
-# Mem0: Long-Term Memory for LLMs
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+# Mem0: The Memory Layer for Personalized AI
Mem0 provides a smart, self-improving memory layer for Large Language Models, enabling personalized AI experiences across applications.
-## Features
-
-- Persistent memory for users, sessions, and agents
-- Self-improving personalization
-- Simple API for easy integration
-- Cross-platform consistency
-
-## Quick Start
+## π Quick Start
### Installation
-
```bash
pip install mem0ai
```
-## Usage
-
-### Instantiate
+### Basic Usage
```python
from mem0 import Memory
+# Initialize Mem0
m = Memory()
+
+# Store a memory from any unstructured text
+result = m.add("I am working on improving my tennis skills. Suggest some online courses.", user_id="alice", metadata={"category": "hobbies"})
+print(result)
+# Created memory: Improving her tennis skills. Looking for online suggestions.
+
+# Retrieve memories
+all_memories = m.get_all()
+print(all_memories)
+
+# Search memories
+related_memories = m.search(query="What are Alice's hobbies?", user_id="alice")
+print(related_memories)
+
+# Update a memory
+result = m.update(memory_id="m1", data="Likes to play tennis on weekends")
+print(result)
+
+# Get memory history
+history = m.history(memory_id="m1")
+print(history)
```
-If you want to use Qdrant in server mode, use the following method to instantiate.
+## π Core Features
-Run qdrant first:
+- **Multi-Level Memory**: User, Session, and AI Agent memory retention
+- **Adaptive Personalization**: Continuous improvement based on interactions
+- **Developer-Friendly API**: Simple integration into various applications
+- **Cross-Platform Consistency**: Uniform behavior across devices
+- **Managed Service**: Hassle-free hosted solution
-```bash
-docker pull qdrant/qdrant
+## π Documentation
-docker run -p 6333:6333 -p 6334:6334 \
- -v $(pwd)/qdrant_storage:/qdrant/storage:z \
- qdrant/qdrant
-```
+For detailed usage instructions and API reference, visit our documentation at [docs.mem0.ai](https://docs.mem0.ai).
-Then, instantiate memory with qdrant server:
+## π§ Advanced Usage
+
+For production environments, you can use Qdrant as a vector store:
```python
from mem0 import Memory
@@ -58,140 +88,19 @@ config = {
m = Memory.from_config(config)
```
-### Store a Memory
+## πΊοΈ Roadmap
-```python
-m.add("Likes to play cricket over weekend", user_id="alex", metadata={"foo": "bar"})
-# Output:
-# [
-# {
-# 'id': 'm1',
-# 'event': 'add',
-# 'data': 'Likes to play cricket over weekend'
-# }
-# ]
+- Integration with various LLM providers
+- Support for LLM frameworks
+- Integration with AI Agents frameworks
+- Customizable memory creation/update rules
+- Hosted platform support
-# Similarly, you can store a memory for an agent
-m.add("Agent X is best travel agent in Paris", agent_id="agent-x", metadata={"type": "long-term"})
-```
+## πββοΈ Support
+Join our Slack or Discord community for support and discussions.
+If you have any questions, feel free to reach out to us using one of the following methods:
-### Retrieve all memories
-
-#### 1. Get all memories
-```python
-m.get_all()
-# Output:
-# [
-# {
-# 'id': 'm1',
-# 'text': 'Likes to play cricket over weekend',
-# 'metadata': {
-# 'data': 'Likes to play cricket over weekend'
-# }
-# },
-# {
-# 'id': 'm2',
-# 'text': 'Agent X is best travel agent in Paris',
-# 'metadata': {
-# 'data': 'Agent X is best travel agent in Paris'
-# }
-# }
-# ]
-
-```
-#### 2. Get memories for specific user
-
-```python
-m.get_all(user_id="alex")
-```
-
-#### 3. Get memories for specific agent
-
-```python
-m.get_all(agent_id="agent-x")
-```
-
-#### 4. Get memories for a user during an agent run
-
-```python
-m.get_all(agent_id="agent-x", user_id="alex")
-```
-
-### Retrieve a Memory
-
-```python
-memory_id = "m1"
-m.get(memory_id)
-# Output:
-# {
-# 'id': '1',
-# 'text': 'Likes to play cricket over weekend',
-# 'metadata': {
-# 'data': 'Likes to play cricket over weekend'
-# }
-# }
-```
-
-### Search for related memories
-
-```python
-m.search(query="What is my name", user_id="deshraj")
-```
-
-### Update a Memory
-
-```python
-m.update(memory_id="m1", data="Likes to play tennis")
-```
-
-### Get history of a Memory
-
-```python
-m.history(memory_id="m1")
-# Output:
-# [
-# {
-# 'id': 'h1',
-# 'memory_id': 'm1',
-# 'prev_value': None,
-# 'new_value': 'Likes to play cricket over weekend',
-# 'event': 'add',
-# 'timestamp': '2024-06-12 21:00:54.466687',
-# 'is_deleted': 0
-# },
-# {
-# 'id': 'h2',
-# 'memory_id': 'm1',
-# 'prev_value': 'Likes to play cricket over weekend',
-# 'new_value': 'Likes to play tennis',
-# 'event': 'update',
-# 'timestamp': '2024-06-12 21:01:17.230943',
-# 'is_deleted': 0
-# }
-# ]
-```
-
-### Delete a Memory
-
-#### Delete specific memory
-
-```python
-m.delete(memory_id="m1")
-```
-
-#### Delete memories for a user or agent
-
-```python
-m.delete_all(user_id="alex")
-m.delete_all(agent_id="agent-x")
-```
-
-#### Delete all Memories
-
-```python
-m.reset()
-```
-
-## License
-
-[Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)
+- [Join our Discord](https://embedchain.ai/discord)
+- [Join our Slack](https://embedchain.ai/slack)
+- [Follow us on Twitter](https://twitter.com/mem0ai)
+- [Email us](mailto:founders@mem0.ai)
diff --git a/docs/images/mem0-bg.png b/docs/images/mem0-bg.png
new file mode 100644
index 00000000..2880ea9a
Binary files /dev/null and b/docs/images/mem0-bg.png differ