docs: update docstrings (#565)
This commit is contained in:
@@ -12,12 +12,13 @@ from embedchain.vectordb.chroma_db import ChromaDB
|
||||
@register_deserializable
|
||||
class App(EmbedChain):
|
||||
"""
|
||||
The EmbedChain app.
|
||||
Has two functions: add and query.
|
||||
The EmbedChain app in it's simplest and most straightforward form.
|
||||
An opinionated choice of LLM, vector database and embedding model.
|
||||
|
||||
adds(data_type, url): adds the data from the given URL to the vector db.
|
||||
Methods:
|
||||
add(source, data_type): adds the data from the given URL to the vector db.
|
||||
query(query): finds answer to the given query using vector database and LLM.
|
||||
dry_run(query): test your prompt without consuming tokens.
|
||||
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -28,8 +29,20 @@ class App(EmbedChain):
|
||||
system_prompt: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param config: AppConfig instance to load as configuration. Optional.
|
||||
:param system_prompt: System prompt string. Optional.
|
||||
Initialize a new `CustomApp` instance. You only have a few choices to make.
|
||||
|
||||
:param config: Config for the app instance.
|
||||
This is the most basic configuration, that does not fall into the LLM, database or embedder category,
|
||||
defaults to None
|
||||
:type config: AppConfig, optional
|
||||
:param llm_config: Allows you to configure the LLM, e.g. how many documents to return,
|
||||
example: `from embedchain.config import LlmConfig`, defaults to None
|
||||
:type llm_config: BaseLlmConfig, optional
|
||||
:param chromadb_config: Allows you to configure the vector database,
|
||||
example: `from embedchain.config import ChromaDbConfig`, defaults to None
|
||||
:type chromadb_config: Optional[ChromaDbConfig], optional
|
||||
:param system_prompt: System prompt that will be provided to the LLM as such, defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
"""
|
||||
if config is None:
|
||||
config = AppConfig()
|
||||
|
||||
@@ -11,26 +11,42 @@ from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
@register_deserializable
|
||||
class CustomApp(EmbedChain):
|
||||
"""
|
||||
The custom EmbedChain app.
|
||||
Has two functions: add and query.
|
||||
Embedchain's custom app allows for most flexibility.
|
||||
|
||||
adds(data_type, url): adds the data from the given URL to the vector db.
|
||||
You can craft your own mix of various LLMs, vector databases and embedding model/functions.
|
||||
|
||||
Methods:
|
||||
add(source, data_type): adds the data from the given URL to the vector db.
|
||||
query(query): finds answer to the given query using vector database and LLM.
|
||||
dry_run(query): test your prompt without consuming tokens.
|
||||
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: CustomAppConfig = None,
|
||||
config: Optional[CustomAppConfig] = None,
|
||||
llm: BaseLlm = None,
|
||||
db: BaseVectorDB = None,
|
||||
embedder: BaseEmbedder = None,
|
||||
system_prompt: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param config: Optional. `CustomAppConfig` instance to load as configuration.
|
||||
:raises ValueError: Config must be provided for custom app
|
||||
:param system_prompt: Optional. System prompt string.
|
||||
Initialize a new `CustomApp` instance. You have to choose a LLM, database and embedder.
|
||||
|
||||
:param config: Config for the app instance. This is the most basic configuration,
|
||||
that does not fall into the LLM, database or embedder category, defaults to None
|
||||
:type config: Optional[CustomAppConfig], optional
|
||||
:param llm: LLM Class instance. example: `from embedchain.llm.openai_llm import OpenAiLlm`, defaults to None
|
||||
:type llm: BaseLlm
|
||||
:param db: The database to use for storing and retrieving embeddings,
|
||||
example: `from embedchain.vectordb.chroma_db import ChromaDb`, defaults to None
|
||||
:type db: BaseVectorDB
|
||||
:param embedder: The embedder (embedding model and function) use to calculate embeddings.
|
||||
example: `from embedchain.embedder.gpt4all_embedder import GPT4AllEmbedder`, defaults to None
|
||||
:type embedder: BaseEmbedder
|
||||
:param system_prompt: System prompt that will be provided to the LLM as such, defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
:raises ValueError: LLM, database or embedder has not been defined.
|
||||
:raises TypeError: LLM, database or embedder is not a valid class instance.
|
||||
"""
|
||||
# Config is not required, it has a default
|
||||
if config is None:
|
||||
|
||||
@@ -12,10 +12,11 @@ from embedchain.vectordb.chroma_db import ChromaDB
|
||||
class Llama2App(CustomApp):
|
||||
"""
|
||||
The EmbedChain Llama2App class.
|
||||
Has two functions: add and query.
|
||||
|
||||
adds(data_type, url): adds the data from the given URL to the vector db.
|
||||
Methods:
|
||||
add(source, data_type): adds the data from the given URL to the vector db.
|
||||
query(query): finds answer to the given query using vector database and LLM.
|
||||
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
|
||||
"""
|
||||
|
||||
def __init__(self, config: CustomAppConfig = None, system_prompt: Optional[str] = None):
|
||||
|
||||
@@ -15,43 +15,64 @@ gpt4all_model = None
|
||||
@register_deserializable
|
||||
class OpenSourceApp(EmbedChain):
|
||||
"""
|
||||
The OpenSource app.
|
||||
Same as App, but uses an open source embedding model and LLM.
|
||||
The embedchain Open Source App.
|
||||
Comes preconfigured with the best open source LLM, embedding model, database.
|
||||
|
||||
Has two function: add and query.
|
||||
|
||||
adds(data_type, url): adds the data from the given URL to the vector db.
|
||||
Methods:
|
||||
add(source, data_type): adds the data from the given URL to the vector db.
|
||||
query(query): finds answer to the given query using vector database and LLM.
|
||||
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: OpenSourceAppConfig = None,
|
||||
llm_config: BaseLlmConfig = None,
|
||||
chromadb_config: Optional[ChromaDbConfig] = None,
|
||||
system_prompt: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param config: OpenSourceAppConfig instance to load as configuration. Optional.
|
||||
`ef` defaults to open source.
|
||||
:param system_prompt: System prompt string. Optional.
|
||||
Initialize a new `CustomApp` instance.
|
||||
Since it's opinionated you don't have to choose a LLM, database and embedder.
|
||||
However, you can configure those.
|
||||
|
||||
:param config: Config for the app instance. This is the most basic configuration,
|
||||
that does not fall into the LLM, database or embedder category, defaults to None
|
||||
:type config: OpenSourceAppConfig, optional
|
||||
:param llm_config: Allows you to configure the LLM, e.g. how many documents to return.
|
||||
example: `from embedchain.config import LlmConfig`, defaults to None
|
||||
:type llm_config: BaseLlmConfig, optional
|
||||
:param chromadb_config: Allows you to configure the open source database,
|
||||
example: `from embedchain.config import ChromaDbConfig`, defaults to None
|
||||
:type chromadb_config: Optional[ChromaDbConfig], optional
|
||||
:param system_prompt: System prompt that will be provided to the LLM as such.
|
||||
Please don't use for the time being, as it's not supported., defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
:raises TypeError: `OpenSourceAppConfig` or `LlmConfig` invalid.
|
||||
"""
|
||||
logging.info("Loading open source embedding model. This may take some time...") # noqa:E501
|
||||
if not config:
|
||||
config = OpenSourceAppConfig()
|
||||
|
||||
if not isinstance(config, OpenSourceAppConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"OpenSourceApp needs a OpenSourceAppConfig passed to it. "
|
||||
"You can import it with `from embedchain.config import OpenSourceAppConfig`"
|
||||
)
|
||||
|
||||
if not config.model:
|
||||
raise ValueError("OpenSourceApp needs a model to be instantiated. Maybe you passed the wrong config type?")
|
||||
if not llm_config:
|
||||
llm_config = BaseLlmConfig(model="orca-mini-3b.ggmlv3.q4_0.bin")
|
||||
elif not isinstance(llm_config, BaseLlmConfig):
|
||||
raise TypeError(
|
||||
"The LlmConfig passed to OpenSourceApp is invalid. "
|
||||
"You can import it with `from embedchain.config import LlmConfig`"
|
||||
)
|
||||
elif not llm_config.model:
|
||||
llm_config.model = "orca-mini-3b.ggmlv3.q4_0.bin"
|
||||
|
||||
logging.info("Successfully loaded open source embedding model.")
|
||||
|
||||
llm = GPT4ALLLlm(config=BaseLlmConfig(model="orca-mini-3b.ggmlv3.q4_0.bin"))
|
||||
llm = GPT4ALLLlm(config=llm_config)
|
||||
embedder = GPT4AllEmbedder(config=BaseEmbedderConfig(model="all-MiniLM-L6-v2"))
|
||||
logging.error("Successfully loaded open source embedding model.")
|
||||
database = ChromaDB(config=chromadb_config)
|
||||
|
||||
super().__init__(config, llm=llm, db=database, embedder=embedder, system_prompt=system_prompt)
|
||||
|
||||
@@ -19,7 +19,14 @@ class EmbedChainPersonApp:
|
||||
:param config: BaseAppConfig instance to load as configuration.
|
||||
"""
|
||||
|
||||
def __init__(self, person, config: BaseAppConfig = None):
|
||||
def __init__(self, person: str, config: BaseAppConfig = None):
|
||||
"""Initialize a new person app
|
||||
|
||||
:param person: Name of the person that's imitated.
|
||||
:type person: str
|
||||
:param config: Configuration class instance, defaults to None
|
||||
:type config: BaseAppConfig, optional
|
||||
"""
|
||||
self.person = person
|
||||
self.person_prompt = f"You are {person}. Whatever you say, you will always say in {person} style." # noqa:E501
|
||||
super().__init__(config)
|
||||
@@ -30,9 +37,12 @@ class EmbedChainPersonApp:
|
||||
if yes it adds the person prompt to it and return the updated config
|
||||
else it creates a config object with the default prompt added to the person prompt
|
||||
|
||||
:param default_prompt: it is the default prompt for query or chat methods
|
||||
:param config: Optional. The `ChatConfig` instance to use as
|
||||
configuration options.
|
||||
:param default_prompt: it is the default prompt for query or chat methods
|
||||
:type default_prompt: str
|
||||
:param config: _description_, defaults to None
|
||||
:type config: BaseLlmConfig, optional
|
||||
:return: The `ChatConfig` instance to use as configuration options.
|
||||
:rtype: _type_
|
||||
"""
|
||||
template = Template(self.person_prompt + " " + default_prompt)
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from typing import Any
|
||||
|
||||
from embedchain import CustomApp
|
||||
from embedchain.config import AddConfig, CustomAppConfig, LlmConfig
|
||||
from embedchain.embedder.openai_embedder import OpenAiEmbedder
|
||||
@@ -12,13 +14,30 @@ class BaseBot(JSONSerializable):
|
||||
def __init__(self):
|
||||
self.app = CustomApp(config=CustomAppConfig(), llm=OpenAiLlm(), db=ChromaDB(), embedder=OpenAiEmbedder())
|
||||
|
||||
def add(self, data, config: AddConfig = None):
|
||||
"""Add data to the bot"""
|
||||
def add(self, data: Any, config: AddConfig = None):
|
||||
"""
|
||||
Add data to the bot (to the vector database).
|
||||
Auto-dectects type only, so some data types might not be usable.
|
||||
|
||||
:param data: data to embed
|
||||
:type data: Any
|
||||
:param config: configuration class instance, defaults to None
|
||||
:type config: AddConfig, optional
|
||||
"""
|
||||
config = config if config else AddConfig()
|
||||
self.app.add(data, config=config)
|
||||
|
||||
def query(self, query, config: LlmConfig = None):
|
||||
"""Query bot"""
|
||||
def query(self, query: str, config: LlmConfig = None) -> str:
|
||||
"""
|
||||
Query the bot
|
||||
|
||||
:param query: the user query
|
||||
:type query: str
|
||||
:param config: configuration class instance, defaults to None
|
||||
:type config: LlmConfig, optional
|
||||
:return: Answer
|
||||
:rtype: str
|
||||
"""
|
||||
config = config
|
||||
return self.app.query(query, config=config)
|
||||
|
||||
|
||||
@@ -42,5 +42,13 @@ class AddConfig(BaseConfig):
|
||||
chunker: Optional[ChunkerConfig] = None,
|
||||
loader: Optional[LoaderConfig] = None,
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the `add` method.
|
||||
|
||||
:param chunker: Chunker config, defaults to None
|
||||
:type chunker: Optional[ChunkerConfig], optional
|
||||
:param loader: Loader config, defaults to None
|
||||
:type loader: Optional[LoaderConfig], optional
|
||||
"""
|
||||
self.loader = loader
|
||||
self.chunker = chunker
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
from embedchain.helper_classes.json_serializable import JSONSerializable
|
||||
|
||||
|
||||
@@ -7,7 +9,13 @@ class BaseConfig(JSONSerializable):
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes a configuration class for a class."""
|
||||
pass
|
||||
|
||||
def as_dict(self):
|
||||
def as_dict(self) -> Dict[str, Any]:
|
||||
"""Return config object as a dict
|
||||
|
||||
:return: config object as dict
|
||||
:rtype: Dict[str, Any]
|
||||
"""
|
||||
return vars(self)
|
||||
|
||||
@@ -13,15 +13,23 @@ class AppConfig(BaseAppConfig):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
log_level=None,
|
||||
id=None,
|
||||
log_level: str = "WARNING",
|
||||
id: Optional[str] = None,
|
||||
collect_metrics: Optional[bool] = None,
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
|
||||
:param id: Optional. ID of the app. Document metadata will have this id.
|
||||
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
|
||||
Initializes a configuration class instance for an App. This is the simplest form of an embedchain app.
|
||||
Most of the configuration is done in the `App` class itself.
|
||||
|
||||
:param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING"
|
||||
:type log_level: str, optional
|
||||
:param id: ID of the app. Document metadata will have this id., defaults to None
|
||||
:type id: Optional[str], optional
|
||||
:param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True
|
||||
:type collect_metrics: Optional[bool], optional
|
||||
:param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead,
|
||||
defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
"""
|
||||
super().__init__(log_level=log_level, id=id, collect_metrics=collect_metrics, collection_name=collection_name)
|
||||
|
||||
@@ -13,23 +13,28 @@ class BaseAppConfig(BaseConfig, JSONSerializable):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
log_level=None,
|
||||
log_level: str = "WARNING",
|
||||
db: Optional[BaseVectorDB] = None,
|
||||
id=None,
|
||||
id: Optional[str] = None,
|
||||
collect_metrics: bool = True,
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
|
||||
:param db: Optional. (Vector) database instance to use for embeddings. Deprecated in favor of app(..., db).
|
||||
:param id: Optional. ID of the app. Document metadata will have this id.
|
||||
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
|
||||
:param db_type: Optional. Initializes a default vector database of the given type.
|
||||
Using the `db` argument is preferred.
|
||||
:param es_config: Optional. elasticsearch database config to be used for connection
|
||||
:param collection_name: Optional. Default collection name.
|
||||
It's recommended to use app.set_collection_name() instead.
|
||||
Initializes a configuration class instance for an App.
|
||||
Most of the configuration is done in the `App` class itself.
|
||||
|
||||
:param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING"
|
||||
:type log_level: str, optional
|
||||
:param db: A database class. It is recommended to set this directly in the `App` class, not this config,
|
||||
defaults to None
|
||||
:type db: Optional[BaseVectorDB], optional
|
||||
:param id: ID of the app. Document metadata will have this id., defaults to None
|
||||
:type id: Optional[str], optional
|
||||
:param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True
|
||||
:type collect_metrics: Optional[bool], optional
|
||||
:param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead,
|
||||
defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
"""
|
||||
self._setup_logging(log_level)
|
||||
self.id = id
|
||||
|
||||
@@ -3,6 +3,7 @@ from typing import Optional
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from embedchain.helper_classes.json_serializable import register_deserializable
|
||||
from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
|
||||
from .BaseAppConfig import BaseAppConfig
|
||||
|
||||
@@ -17,24 +18,29 @@ class CustomAppConfig(BaseAppConfig):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
log_level=None,
|
||||
db=None,
|
||||
id=None,
|
||||
log_level: str = "WARNING",
|
||||
db: Optional[BaseVectorDB] = None,
|
||||
id: Optional[str] = None,
|
||||
collect_metrics: Optional[bool] = None,
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
|
||||
:param db: Optional. (Vector) database to use for embeddings.
|
||||
:param id: Optional. ID of the app. Document metadata will have this id.
|
||||
:param provider: Optional. (Providers): LLM Provider to use.
|
||||
:param open_source_app_config: Optional. Config instance needed for open source apps.
|
||||
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
|
||||
:param collection_name: Optional. Default collection name.
|
||||
It's recommended to use app.set_collection_name() instead.
|
||||
"""
|
||||
Initializes a configuration class instance for an Custom App.
|
||||
Most of the configuration is done in the `CustomApp` class itself.
|
||||
|
||||
:param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING"
|
||||
:type log_level: str, optional
|
||||
:param db: A database class. It is recommended to set this directly in the `CustomApp` class, not this config,
|
||||
defaults to None
|
||||
:type db: Optional[BaseVectorDB], optional
|
||||
:param id: ID of the app. Document metadata will have this id., defaults to None
|
||||
:type id: Optional[str], optional
|
||||
:param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True
|
||||
:type collect_metrics: Optional[bool], optional
|
||||
:param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead,
|
||||
defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
"""
|
||||
super().__init__(
|
||||
log_level=log_level, db=db, id=id, collect_metrics=collect_metrics, collection_name=collection_name
|
||||
)
|
||||
|
||||
@@ -13,21 +13,27 @@ class OpenSourceAppConfig(BaseAppConfig):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
log_level=None,
|
||||
id=None,
|
||||
log_level: str = "WARNING",
|
||||
id: Optional[str] = None,
|
||||
collect_metrics: Optional[bool] = None,
|
||||
model=None,
|
||||
model: str = "orca-mini-3b.ggmlv3.q4_0.bin",
|
||||
collection_name: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
|
||||
:param id: Optional. ID of the app. Document metadata will have this id.
|
||||
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
|
||||
:param model: Optional. GPT4ALL uses the model to instantiate the class.
|
||||
So unlike `App`, it has to be provided before querying.
|
||||
:param collection_name: Optional. Default collection name.
|
||||
It's recommended to use app.db.set_collection_name() instead.
|
||||
Initializes a configuration class instance for an Open Source App.
|
||||
|
||||
:param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING"
|
||||
:type log_level: str, optional
|
||||
:param id: ID of the app. Document metadata will have this id., defaults to None
|
||||
:type id: Optional[str], optional
|
||||
:param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True
|
||||
:type collect_metrics: Optional[bool], optional
|
||||
:param model: GPT4ALL uses the model to instantiate the class.
|
||||
Unlike `App`, it has to be provided before querying, defaults to "orca-mini-3b.ggmlv3.q4_0.bin"
|
||||
:type model: str, optional
|
||||
:param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead,
|
||||
defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
"""
|
||||
self.model = model or "orca-mini-3b.ggmlv3.q4_0.bin"
|
||||
|
||||
|
||||
@@ -6,5 +6,13 @@ from embedchain.helper_classes.json_serializable import register_deserializable
|
||||
@register_deserializable
|
||||
class BaseEmbedderConfig:
|
||||
def __init__(self, model: Optional[str] = None, deployment_name: Optional[str] = None):
|
||||
"""
|
||||
Initialize a new instance of an embedder config class.
|
||||
|
||||
:param model: model name of the llm embedding model (not applicable to all providers), defaults to None
|
||||
:type model: Optional[str], optional
|
||||
:param deployment_name: deployment name for llm embedding model, defaults to None
|
||||
:type deployment_name: Optional[str], optional
|
||||
"""
|
||||
self.model = model
|
||||
self.deployment_name = deployment_name
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import re
|
||||
from string import Template
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from embedchain.config.BaseConfig import BaseConfig
|
||||
from embedchain.helper_classes.json_serializable import register_deserializable
|
||||
@@ -57,51 +57,59 @@ class BaseLlmConfig(BaseConfig):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
number_documents=None,
|
||||
template: Template = None,
|
||||
model=None,
|
||||
temperature=None,
|
||||
max_tokens=None,
|
||||
top_p=None,
|
||||
number_documents: int = 1,
|
||||
template: Optional[Template] = None,
|
||||
model: Optional[str] = None,
|
||||
temperature: float = 0,
|
||||
max_tokens: int = 1000,
|
||||
top_p: float = 1,
|
||||
stream: bool = False,
|
||||
deployment_name=None,
|
||||
deployment_name: Optional[str] = None,
|
||||
system_prompt: Optional[str] = None,
|
||||
where=None,
|
||||
where: Dict[str, Any] = None,
|
||||
):
|
||||
"""
|
||||
Initializes the QueryConfig instance.
|
||||
Initializes a configuration class instance for the LLM.
|
||||
|
||||
:param number_documents: Number of documents to pull from the database as
|
||||
context.
|
||||
:param template: Optional. The `Template` instance to use as a template for
|
||||
prompt.
|
||||
:param model: Optional. Controls the OpenAI model used.
|
||||
:param temperature: Optional. Controls the randomness of the model's output.
|
||||
Higher values (closer to 1) make output more random, lower values make it more
|
||||
deterministic.
|
||||
:param max_tokens: Optional. Controls how many tokens are generated.
|
||||
:param top_p: Optional. Controls the diversity of words. Higher values
|
||||
(closer to 1) make word selection more diverse, lower values make words less
|
||||
diverse.
|
||||
:param stream: Optional. Control if response is streamed back to user
|
||||
:param deployment_name: t.b.a.
|
||||
:param system_prompt: Optional. System prompt string.
|
||||
:param where: Optional. A dictionary of key-value pairs to filter the database results.
|
||||
Takes the place of the former `QueryConfig` or `ChatConfig`.
|
||||
Use `LlmConfig` as an alias to `BaseLlmConfig`.
|
||||
|
||||
:param number_documents: Number of documents to pull from the database as
|
||||
context, defaults to 1
|
||||
:type number_documents: int, optional
|
||||
:param template: The `Template` instance to use as a template for
|
||||
prompt, defaults to None
|
||||
:type template: Optional[Template], optional
|
||||
:param model: Controls the OpenAI model used, defaults to None
|
||||
:type model: Optional[str], optional
|
||||
:param temperature: Controls the randomness of the model's output.
|
||||
Higher values (closer to 1) make output more random, lower values make it more deterministic, defaults to 0
|
||||
:type temperature: float, optional
|
||||
:param max_tokens: Controls how many tokens are generated, defaults to 1000
|
||||
:type max_tokens: int, optional
|
||||
:param top_p: Controls the diversity of words. Higher values (closer to 1) make word selection more diverse,
|
||||
defaults to 1
|
||||
:type top_p: float, optional
|
||||
:param stream: Control if response is streamed back to user, defaults to False
|
||||
:type stream: bool, optional
|
||||
:param deployment_name: t.b.a., defaults to None
|
||||
:type deployment_name: Optional[str], optional
|
||||
:param system_prompt: System prompt string, defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
|
||||
:type where: Dict[str, Any], optional
|
||||
:raises ValueError: If the template is not valid as template should
|
||||
contain $context and $query (and optionally $history).
|
||||
contain $context and $query (and optionally $history)
|
||||
:raises ValueError: Stream is not boolean
|
||||
"""
|
||||
if number_documents is None:
|
||||
self.number_documents = 1
|
||||
else:
|
||||
self.number_documents = number_documents
|
||||
|
||||
if template is None:
|
||||
template = DEFAULT_PROMPT_TEMPLATE
|
||||
|
||||
self.temperature = temperature if temperature else 0
|
||||
self.max_tokens = max_tokens if max_tokens else 1000
|
||||
self.number_documents = number_documents
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
self.model = model
|
||||
self.top_p = top_p if top_p else 1
|
||||
self.top_p = top_p
|
||||
self.deployment_name = deployment_name
|
||||
self.system_prompt = system_prompt
|
||||
|
||||
@@ -115,20 +123,24 @@ class BaseLlmConfig(BaseConfig):
|
||||
self.stream = stream
|
||||
self.where = where
|
||||
|
||||
def validate_template(self, template: Template):
|
||||
def validate_template(self, template: Template) -> bool:
|
||||
"""
|
||||
validate the template
|
||||
|
||||
:param template: the template to validate
|
||||
:return: Boolean, valid (true) or invalid (false)
|
||||
:type template: Template
|
||||
:return: valid (true) or invalid (false)
|
||||
:rtype: bool
|
||||
"""
|
||||
return re.search(query_re, template.template) and re.search(context_re, template.template)
|
||||
|
||||
def _validate_template_history(self, template: Template):
|
||||
def _validate_template_history(self, template: Template) -> bool:
|
||||
"""
|
||||
validate the history template for history
|
||||
validate the template with history
|
||||
|
||||
:param template: the template to validate
|
||||
:return: Boolean, valid (true) or invalid (false)
|
||||
:type template: Template
|
||||
:return: valid (true) or invalid (false)
|
||||
:rtype: bool
|
||||
"""
|
||||
return re.search(history_re, template.template)
|
||||
|
||||
@@ -7,11 +7,23 @@ class BaseVectorDbConfig(BaseConfig):
|
||||
def __init__(
|
||||
self,
|
||||
collection_name: Optional[str] = None,
|
||||
dir: Optional[str] = None,
|
||||
dir: str = "db",
|
||||
host: Optional[str] = None,
|
||||
port: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the vector database.
|
||||
|
||||
:param collection_name: Default name for the collection, defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
:param dir: Path to the database directory, where the database is stored, defaults to "db"
|
||||
:type dir: str, optional
|
||||
:param host: Database connection remote host. Use this if you run Embedchain as a client, defaults to None
|
||||
:type host: Optional[str], optional
|
||||
:param host: Database connection remote port. Use this if you run Embedchain as a client, defaults to None
|
||||
:type port: Optional[str], optional
|
||||
"""
|
||||
self.collection_name = collection_name or "embedchain_store"
|
||||
self.dir = dir or "db"
|
||||
self.dir = dir
|
||||
self.host = host
|
||||
self.port = port
|
||||
|
||||
@@ -14,6 +14,20 @@ class ChromaDbConfig(BaseVectorDbConfig):
|
||||
port: Optional[str] = None,
|
||||
chroma_settings: Optional[dict] = None,
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for ChromaDB.
|
||||
|
||||
:param collection_name: Default name for the collection, defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
:param dir: Path to the database directory, where the database is stored, defaults to None
|
||||
:type dir: Optional[str], optional
|
||||
:param host: Database connection remote host. Use this if you run Embedchain as a client, defaults to None
|
||||
:type host: Optional[str], optional
|
||||
:param port: Database connection remote port. Use this if you run Embedchain as a client, defaults to None
|
||||
:type port: Optional[str], optional
|
||||
:param chroma_settings: Chroma settings dict, defaults to None
|
||||
:type chroma_settings: Optional[dict], optional
|
||||
"""
|
||||
"""
|
||||
:param chroma_settings: Optional. Chroma settings for connection.
|
||||
"""
|
||||
|
||||
@@ -14,9 +14,16 @@ class ElasticsearchDBConfig(BaseVectorDbConfig):
|
||||
**ES_EXTRA_PARAMS: Dict[str, any],
|
||||
):
|
||||
"""
|
||||
Config to initialize an elasticsearch client.
|
||||
:param es_url. elasticsearch url or list of nodes url to be used for connection
|
||||
Initializes a configuration class instance for an Elasticsearch client.
|
||||
|
||||
:param collection_name: Default name for the collection, defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
:param dir: Path to the database directory, where the database is stored, defaults to None
|
||||
:type dir: Optional[str], optional
|
||||
:param es_url: elasticsearch url or list of nodes url to be used for connection, defaults to None
|
||||
:type es_url: Union[str, List[str]], optional
|
||||
:param ES_EXTRA_PARAMS: extra params dict that can be passed to elasticsearch.
|
||||
:type ES_EXTRA_PARAMS: Dict[str, Any], optional
|
||||
"""
|
||||
# self, es_url: Union[str, List[str]] = None, **ES_EXTRA_PARAMS: Dict[str, any]):
|
||||
self.ES_URL = es_url
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from embedchain.chunkers.base_chunker import BaseChunker
|
||||
from embedchain.chunkers.docs_site import DocsSiteChunker
|
||||
from embedchain.chunkers.docx_file import DocxFileChunker
|
||||
from embedchain.chunkers.notion import NotionChunker
|
||||
@@ -8,7 +9,9 @@ from embedchain.chunkers.text import TextChunker
|
||||
from embedchain.chunkers.web_page import WebPageChunker
|
||||
from embedchain.chunkers.youtube_video import YoutubeVideoChunker
|
||||
from embedchain.config import AddConfig
|
||||
from embedchain.config.AddConfig import ChunkerConfig, LoaderConfig
|
||||
from embedchain.helper_classes.json_serializable import JSONSerializable
|
||||
from embedchain.loaders.base_loader import BaseLoader
|
||||
from embedchain.loaders.csv import CsvLoader
|
||||
from embedchain.loaders.docs_site_loader import DocsSiteLoader
|
||||
from embedchain.loaders.docx_file import DocxFileLoader
|
||||
@@ -29,16 +32,28 @@ class DataFormatter(JSONSerializable):
|
||||
"""
|
||||
|
||||
def __init__(self, data_type: DataType, config: AddConfig):
|
||||
self.loader = self._get_loader(data_type, config.loader)
|
||||
self.chunker = self._get_chunker(data_type, config.chunker)
|
||||
"""
|
||||
Initialize a dataformatter, set data type and chunker based on datatype.
|
||||
|
||||
def _get_loader(self, data_type: DataType, config):
|
||||
:param data_type: The type of the data to load and chunk.
|
||||
:type data_type: DataType
|
||||
:param config: AddConfig instance with nested loader and chunker config attributes.
|
||||
:type config: AddConfig
|
||||
"""
|
||||
self.loader = self._get_loader(data_type=data_type, config=config.loader)
|
||||
self.chunker = self._get_chunker(data_type=data_type, config=config.chunker)
|
||||
|
||||
def _get_loader(self, data_type: DataType, config: LoaderConfig) -> BaseLoader:
|
||||
"""
|
||||
Returns the appropriate data loader for the given data type.
|
||||
|
||||
:param data_type: The type of the data to load.
|
||||
:return: The loader for the given data type.
|
||||
:type data_type: DataType
|
||||
:param config: Config to initialize the loader with.
|
||||
:type config: LoaderConfig
|
||||
:raises ValueError: If an unsupported data type is provided.
|
||||
:return: The loader for the given data type.
|
||||
:rtype: BaseLoader
|
||||
"""
|
||||
loaders = {
|
||||
DataType.YOUTUBE_VIDEO: YoutubeVideoLoader,
|
||||
@@ -53,8 +68,8 @@ class DataFormatter(JSONSerializable):
|
||||
}
|
||||
lazy_loaders = {DataType.NOTION}
|
||||
if data_type in loaders:
|
||||
loader_class = loaders[data_type]
|
||||
loader = loader_class()
|
||||
loader_class: type = loaders[data_type]
|
||||
loader: BaseLoader = loader_class()
|
||||
return loader
|
||||
elif data_type in lazy_loaders:
|
||||
if data_type == DataType.NOTION:
|
||||
@@ -66,13 +81,16 @@ class DataFormatter(JSONSerializable):
|
||||
else:
|
||||
raise ValueError(f"Unsupported data type: {data_type}")
|
||||
|
||||
def _get_chunker(self, data_type: DataType, config):
|
||||
"""
|
||||
Returns the appropriate chunker for the given data type.
|
||||
def _get_chunker(self, data_type: DataType, config: ChunkerConfig) -> BaseChunker:
|
||||
"""Returns the appropriate chunker for the given data type.
|
||||
|
||||
:param data_type: The type of the data to chunk.
|
||||
:return: The chunker for the given data type.
|
||||
:type data_type: DataType
|
||||
:param config: Config to initialize the chunker with.
|
||||
:type config: ChunkerConfig
|
||||
:raises ValueError: If an unsupported data type is provided.
|
||||
:return: The chunker for the given data type.
|
||||
:rtype: BaseChunker
|
||||
"""
|
||||
chunker_classes = {
|
||||
DataType.YOUTUBE_VIDEO: YoutubeVideoChunker,
|
||||
@@ -87,8 +105,8 @@ class DataFormatter(JSONSerializable):
|
||||
DataType.CSV: TableChunker,
|
||||
}
|
||||
if data_type in chunker_classes:
|
||||
chunker_class = chunker_classes[data_type]
|
||||
chunker = chunker_class(config)
|
||||
chunker_class: type = chunker_classes[data_type]
|
||||
chunker: BaseChunker = chunker_class(config)
|
||||
chunker.set_data_type(data_type)
|
||||
return chunker
|
||||
else:
|
||||
|
||||
@@ -6,11 +6,10 @@ import os
|
||||
import threading
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import requests
|
||||
from dotenv import load_dotenv
|
||||
from langchain.docstore.document import Document
|
||||
from tenacity import retry, stop_after_attempt, wait_fixed
|
||||
|
||||
from embedchain.chunkers.base_chunker import BaseChunker
|
||||
@@ -46,8 +45,17 @@ class EmbedChain(JSONSerializable):
|
||||
Initializes the EmbedChain instance, sets up a vector DB client and
|
||||
creates a collection.
|
||||
|
||||
:param config: BaseAppConfig instance to load as configuration.
|
||||
:param system_prompt: Optional. System prompt string.
|
||||
:param config: Configuration just for the app, not the db or llm or embedder.
|
||||
:type config: BaseAppConfig
|
||||
:param llm: Instance of the LLM you want to use.
|
||||
:type llm: BaseLlm
|
||||
:param db: Instance of the Database to use, defaults to None
|
||||
:type db: BaseVectorDB, optional
|
||||
:param embedder: instance of the embedder to use, defaults to None
|
||||
:type embedder: BaseEmbedder, optional
|
||||
:param system_prompt: System prompt to use in the llm query, defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
:raises ValueError: No database or embedder provided.
|
||||
"""
|
||||
|
||||
self.config = config
|
||||
@@ -88,10 +96,13 @@ class EmbedChain(JSONSerializable):
|
||||
thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("init",))
|
||||
thread_telemetry.start()
|
||||
|
||||
def _load_or_generate_user_id(self):
|
||||
def _load_or_generate_user_id(self) -> str:
|
||||
"""
|
||||
Loads the user id from the config file if it exists, otherwise generates a new
|
||||
one and saves it to the config file.
|
||||
|
||||
:return: user id
|
||||
:rtype: str
|
||||
"""
|
||||
if not os.path.exists(CONFIG_DIR):
|
||||
os.makedirs(CONFIG_DIR)
|
||||
@@ -110,9 +121,9 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
def add(
|
||||
self,
|
||||
source,
|
||||
source: Any,
|
||||
data_type: Optional[DataType] = None,
|
||||
metadata: Optional[Dict] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
config: Optional[AddConfig] = None,
|
||||
):
|
||||
"""
|
||||
@@ -121,12 +132,17 @@ class EmbedChain(JSONSerializable):
|
||||
and then stores the embedding to vector database.
|
||||
|
||||
:param source: The data to embed, can be a URL, local file or raw content, depending on the data type.
|
||||
:param data_type: Optional. Automatically detected, but can be forced with this argument.
|
||||
The type of the data to add.
|
||||
:param metadata: Optional. Metadata associated with the data source.
|
||||
:param config: Optional. The `AddConfig` instance to use as configuration
|
||||
options.
|
||||
:type source: Any
|
||||
:param data_type: Automatically detected, but can be forced with this argument. The type of the data to add,
|
||||
defaults to None
|
||||
:type data_type: Optional[DataType], optional
|
||||
:param metadata: Metadata associated with the data source., defaults to None
|
||||
:type metadata: Optional[Dict[str, Any]], optional
|
||||
:param config: The `AddConfig` instance to use as configuration options., defaults to None
|
||||
:type config: Optional[AddConfig], optional
|
||||
:raises ValueError: Invalid data type
|
||||
:return: source_id, a md5-hash of the source, in hexadecimal representation.
|
||||
:rtype: str
|
||||
"""
|
||||
if config is None:
|
||||
config = AddConfig()
|
||||
@@ -177,39 +193,62 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
return source_id
|
||||
|
||||
def add_local(self, source, data_type=None, metadata=None, config: AddConfig = None):
|
||||
def add_local(
|
||||
self,
|
||||
source: Any,
|
||||
data_type: Optional[DataType] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
config: Optional[AddConfig] = None,
|
||||
):
|
||||
"""
|
||||
Warning:
|
||||
This method is deprecated and will be removed in future versions. Use `add` instead.
|
||||
|
||||
Adds the data from the given URL to the vector db.
|
||||
Loads the data, chunks it, create embedding for each chunk
|
||||
and then stores the embedding to vector database.
|
||||
|
||||
Warning:
|
||||
This method is deprecated and will be removed in future versions. Use `add` instead.
|
||||
|
||||
:param source: The data to embed, can be a URL, local file or raw content, depending on the data type.
|
||||
:param data_type: Optional. Automatically detected, but can be forced with this argument.
|
||||
The type of the data to add.
|
||||
:param metadata: Optional. Metadata associated with the data source.
|
||||
:param config: Optional. The `AddConfig` instance to use as configuration
|
||||
options.
|
||||
:return: md5-hash of the source, in hexadecimal representation.
|
||||
:type source: Any
|
||||
:param data_type: Automatically detected, but can be forced with this argument. The type of the data to add,
|
||||
defaults to None
|
||||
:type data_type: Optional[DataType], optional
|
||||
:param metadata: Metadata associated with the data source., defaults to None
|
||||
:type metadata: Optional[Dict[str, Any]], optional
|
||||
:param config: The `AddConfig` instance to use as configuration options., defaults to None
|
||||
:type config: Optional[AddConfig], optional
|
||||
:raises ValueError: Invalid data type
|
||||
:return: source_id, a md5-hash of the source, in hexadecimal representation.
|
||||
:rtype: str
|
||||
"""
|
||||
logging.warning(
|
||||
"The `add_local` method is deprecated and will be removed in future versions. Please use the `add` method for both local and remote files." # noqa: E501
|
||||
)
|
||||
return self.add(source=source, data_type=data_type, metadata=metadata, config=config)
|
||||
|
||||
def load_and_embed(self, loader: BaseLoader, chunker: BaseChunker, src, metadata=None, source_id=None):
|
||||
"""
|
||||
Loads the data from the given URL, chunks it, and adds it to database.
|
||||
def load_and_embed(
|
||||
self,
|
||||
loader: BaseLoader,
|
||||
chunker: BaseChunker,
|
||||
src: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
source_id: Optional[str] = None,
|
||||
) -> Tuple[List[str], Dict[str, Any], List[str], int]:
|
||||
"""The loader to use to load the data.
|
||||
|
||||
:param loader: The loader to use to load the data.
|
||||
:type loader: BaseLoader
|
||||
:param chunker: The chunker to use to chunk the data.
|
||||
:param src: The data to be handled by the loader. Can be a URL for
|
||||
remote sources or local content for local loaders.
|
||||
:param metadata: Optional. Metadata associated with the data source.
|
||||
:param source_id: Hexadecimal hash of the source.
|
||||
:type chunker: BaseChunker
|
||||
:param src: The data to be handled by the loader.
|
||||
Can be a URL for remote sources or local content for local loaders.
|
||||
:type src: Any
|
||||
:param metadata: Metadata associated with the data source., defaults to None
|
||||
:type metadata: Dict[str, Any], optional
|
||||
:param source_id: Hexadecimal hash of the source., defaults to None
|
||||
:type source_id: str, optional
|
||||
:return: (List) documents (embedded text), (List) metadata, (list) ids, (int) number of chunks
|
||||
:rtype: Tuple[List[str], Dict[str, Any], List[str], int]
|
||||
"""
|
||||
embeddings_data = chunker.create_chunks(loader, src)
|
||||
|
||||
@@ -264,25 +303,19 @@ class EmbedChain(JSONSerializable):
|
||||
print((f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}"))
|
||||
return list(documents), metadatas, ids, count_new_chunks
|
||||
|
||||
def _format_result(self, results):
|
||||
return [
|
||||
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
||||
for result in zip(
|
||||
results["documents"][0],
|
||||
results["metadatas"][0],
|
||||
results["distances"][0],
|
||||
)
|
||||
]
|
||||
|
||||
def retrieve_from_database(self, input_query, config: Optional[BaseLlmConfig] = None, where=None):
|
||||
def retrieve_from_database(self, input_query: str, config: Optional[BaseLlmConfig] = None, where=None) -> List[str]:
|
||||
"""
|
||||
Queries the vector database based on the given input query.
|
||||
Gets relevant doc based on the query
|
||||
|
||||
:param input_query: The query to use.
|
||||
:param config: The query configuration.
|
||||
:param where: Optional. A dictionary of key-value pairs to filter the database results.
|
||||
:return: The content of the document that matched your query.
|
||||
:type input_query: str
|
||||
:param config: The query configuration, defaults to None
|
||||
:type config: Optional[BaseLlmConfig], optional
|
||||
:param where: A dictionary of key-value pairs to filter the database results, defaults to None
|
||||
:type where: _type_, optional
|
||||
:return: List of contents of the document that matched your query
|
||||
:rtype: List[str]
|
||||
"""
|
||||
query_config = config or self.llm.config
|
||||
|
||||
@@ -304,23 +337,24 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
return contents
|
||||
|
||||
def query(self, input_query, config: BaseLlmConfig = None, dry_run=False, where=None):
|
||||
def query(self, input_query: str, config: BaseLlmConfig = None, dry_run=False, where: Optional[Dict] = None) -> str:
|
||||
"""
|
||||
Queries the vector database based on the given input query.
|
||||
Gets relevant doc based on the query and then passes it to an
|
||||
LLM as context to get the answer.
|
||||
|
||||
:param input_query: The query to use.
|
||||
:param config: Optional. The `LlmConfig` instance to use as configuration options.
|
||||
This is used for one method call. To persistently use a config, declare it during app init.
|
||||
:param dry_run: Optional. A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response.
|
||||
You can use it to test your prompt, including the context provided
|
||||
by the vector database's doc retrieval.
|
||||
The only thing the dry run does not consider is the cut-off due to
|
||||
the `max_tokens` parameter.
|
||||
:param where: Optional. A dictionary of key-value pairs to filter the database results.
|
||||
:return: The answer to the query.
|
||||
:type input_query: str
|
||||
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
|
||||
To persistently use a config, declare it during app init., defaults to None
|
||||
:type config: Optional[BaseLlmConfig], optional
|
||||
:param dry_run: A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response., defaults to False
|
||||
:type dry_run: bool, optional
|
||||
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
|
||||
:type where: Optional[Dict[str, str]], optional
|
||||
:return: The answer to the query or the dry run result
|
||||
:rtype: str
|
||||
"""
|
||||
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
|
||||
answer = self.llm.query(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
|
||||
@@ -331,24 +365,32 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
return answer
|
||||
|
||||
def chat(self, input_query, config: BaseLlmConfig = None, dry_run=False, where=None):
|
||||
def chat(
|
||||
self,
|
||||
input_query: str,
|
||||
config: Optional[BaseLlmConfig] = None,
|
||||
dry_run=False,
|
||||
where: Optional[Dict[str, str]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Queries the vector database on the given input query.
|
||||
Gets relevant doc based on the query and then passes it to an
|
||||
LLM as context to get the answer.
|
||||
|
||||
Maintains the whole conversation in memory.
|
||||
|
||||
:param input_query: The query to use.
|
||||
:param config: Optional. The `LlmConfig` instance to use as configuration options.
|
||||
This is used for one method call. To persistently use a config, declare it during app init.
|
||||
:param dry_run: Optional. A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response.
|
||||
You can use it to test your prompt, including the context provided
|
||||
by the vector database's doc retrieval.
|
||||
The only thing the dry run does not consider is the cut-off due to
|
||||
the `max_tokens` parameter.
|
||||
:param where: Optional. A dictionary of key-value pairs to filter the database results.
|
||||
:return: The answer to the query.
|
||||
:type input_query: str
|
||||
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
|
||||
To persistently use a config, declare it during app init., defaults to None
|
||||
:type config: Optional[BaseLlmConfig], optional
|
||||
:param dry_run: A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response., defaults to False
|
||||
:type dry_run: bool, optional
|
||||
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
|
||||
:type where: Optional[Dict[str, str]], optional
|
||||
:return: The answer to the query or the dry run result
|
||||
:rtype: str
|
||||
"""
|
||||
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
|
||||
answer = self.llm.chat(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
|
||||
@@ -359,15 +401,18 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
return answer
|
||||
|
||||
def set_collection(self, collection_name):
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the collection to use.
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param collection_name: The name of the collection to use.
|
||||
Using `app.db.set_collection_name` method is preferred to this.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.db.set_collection_name(collection_name)
|
||||
self.db.set_collection_name(name)
|
||||
# Create the collection if it does not exist
|
||||
self.db._get_or_create_collection(collection_name)
|
||||
self.db._get_or_create_collection(name)
|
||||
# TODO: Check whether it is necessary to assign to the `self.collection` attribute,
|
||||
# since the main purpose is the creation.
|
||||
|
||||
@@ -378,8 +423,9 @@ class EmbedChain(JSONSerializable):
|
||||
DEPRECATED IN FAVOR OF `db.count()`
|
||||
|
||||
:return: The number of embeddings.
|
||||
:rtype: int
|
||||
"""
|
||||
logging.warning("DEPRECATION WARNING: Please use `db.count()` instead of `count()`.")
|
||||
logging.warning("DEPRECATION WARNING: Please use `app.db.count()` instead of `app.count()`.")
|
||||
return self.db.count()
|
||||
|
||||
def reset(self):
|
||||
@@ -393,11 +439,14 @@ class EmbedChain(JSONSerializable):
|
||||
thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("reset",))
|
||||
thread_telemetry.start()
|
||||
|
||||
logging.warning("DEPRECATION WARNING: Please use `db.reset()` instead of `reset()`.")
|
||||
logging.warning("DEPRECATION WARNING: Please use `app.db.reset()` instead of `App.reset()`.")
|
||||
self.db.reset()
|
||||
|
||||
@retry(stop=stop_after_attempt(3), wait=wait_fixed(1))
|
||||
def _send_telemetry_event(self, method: str, extra_metadata: Optional[dict] = None):
|
||||
"""
|
||||
Send telemetry event to the embedchain server. This is anonymous. It can be toggled off in `AppConfig`.
|
||||
"""
|
||||
if not self.config.collect_metrics:
|
||||
return
|
||||
|
||||
|
||||
@@ -19,7 +19,13 @@ class BaseEmbedder:
|
||||
To manually overwrite you can use this classes `set_...` methods.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = FileNotFoundError):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
"""
|
||||
Intialize the embedder class.
|
||||
|
||||
:param config: embedder configuration option class, defaults to None
|
||||
:type config: Optional[BaseEmbedderConfig], optional
|
||||
"""
|
||||
if config is None:
|
||||
self.config = BaseEmbedderConfig()
|
||||
else:
|
||||
@@ -27,17 +33,35 @@ class BaseEmbedder:
|
||||
self.vector_dimension: int
|
||||
|
||||
def set_embedding_fn(self, embedding_fn: Callable[[list[str]], list[str]]):
|
||||
"""
|
||||
Set or overwrite the embedding function to be used by the database to store and retrieve documents.
|
||||
|
||||
:param embedding_fn: Function to be used to generate embeddings.
|
||||
:type embedding_fn: Callable[[list[str]], list[str]]
|
||||
:raises ValueError: Embedding function is not callable.
|
||||
"""
|
||||
if not hasattr(embedding_fn, "__call__"):
|
||||
raise ValueError("Embedding function is not a function")
|
||||
self.embedding_fn = embedding_fn
|
||||
|
||||
def set_vector_dimension(self, vector_dimension: int):
|
||||
"""
|
||||
Set or overwrite the vector dimension size
|
||||
|
||||
:param vector_dimension: vector dimension size
|
||||
:type vector_dimension: int
|
||||
"""
|
||||
self.vector_dimension = vector_dimension
|
||||
|
||||
@staticmethod
|
||||
def _langchain_default_concept(embeddings: Any):
|
||||
"""
|
||||
Langchains default function layout for embeddings.
|
||||
|
||||
:param embeddings: Langchain embeddings
|
||||
:type embeddings: Any
|
||||
:return: embedding function
|
||||
:rtype: Callable
|
||||
"""
|
||||
|
||||
def embed_function(texts: Documents) -> Embeddings:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import List, Optional
|
||||
from typing import Any, Dict, Generator, List, Optional
|
||||
|
||||
from langchain.memory import ConversationBufferMemory
|
||||
from langchain.schema import BaseMessage
|
||||
@@ -13,6 +13,11 @@ from embedchain.helper_classes.json_serializable import JSONSerializable
|
||||
|
||||
class BaseLlm(JSONSerializable):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
"""Initialize a base LLM class
|
||||
|
||||
:param config: LLM configuration option class, defaults to None
|
||||
:type config: Optional[BaseLlmConfig], optional
|
||||
"""
|
||||
if config is None:
|
||||
self.config = BaseLlmConfig()
|
||||
else:
|
||||
@@ -21,7 +26,7 @@ class BaseLlm(JSONSerializable):
|
||||
self.memory = ConversationBufferMemory()
|
||||
self.is_docs_site_instance = False
|
||||
self.online = False
|
||||
self.history: any = None
|
||||
self.history: Any = None
|
||||
|
||||
def get_llm_model_answer(self):
|
||||
"""
|
||||
@@ -29,24 +34,33 @@ class BaseLlm(JSONSerializable):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def set_history(self, history: any):
|
||||
def set_history(self, history: Any):
|
||||
"""
|
||||
Provide your own history.
|
||||
Especially interesting for the query method, which does not internally manage conversation history.
|
||||
|
||||
:param history: History to set
|
||||
:type history: Any
|
||||
"""
|
||||
self.history = history
|
||||
|
||||
def update_history(self):
|
||||
"""Update class history attribute with history in memory (for chat method)"""
|
||||
chat_history = self.memory.load_memory_variables({})["history"]
|
||||
if chat_history:
|
||||
self.set_history(chat_history)
|
||||
|
||||
def generate_prompt(self, input_query, contexts, **kwargs):
|
||||
def generate_prompt(self, input_query: str, contexts: List[str], **kwargs: Dict[str, Any]) -> str:
|
||||
"""
|
||||
Generates a prompt based on the given query and context, ready to be
|
||||
passed to an LLM
|
||||
|
||||
:param input_query: The query to use.
|
||||
:type input_query: str
|
||||
:param contexts: List of similar documents to the query used as context.
|
||||
:param config: Optional. The `QueryConfig` instance to use as
|
||||
configuration options.
|
||||
:type contexts: List[str]
|
||||
:return: The prompt
|
||||
:rtype: str
|
||||
"""
|
||||
context_string = (" | ").join(contexts)
|
||||
web_search_result = kwargs.get("web_search_result", "")
|
||||
@@ -73,36 +87,67 @@ class BaseLlm(JSONSerializable):
|
||||
)
|
||||
return prompt
|
||||
|
||||
def _append_search_and_context(self, context, web_search_result):
|
||||
def _append_search_and_context(self, context: str, web_search_result: str) -> str:
|
||||
"""Append web search context to existing context
|
||||
|
||||
:param context: Existing context
|
||||
:type context: str
|
||||
:param web_search_result: Web search result
|
||||
:type web_search_result: str
|
||||
:return: Concatenated web search result
|
||||
:rtype: str
|
||||
"""
|
||||
return f"{context}\nWeb Search Result: {web_search_result}"
|
||||
|
||||
def get_answer_from_llm(self, prompt):
|
||||
def get_answer_from_llm(self, prompt: str):
|
||||
"""
|
||||
Gets an answer based on the given query and context by passing it
|
||||
to an LLM.
|
||||
|
||||
:param query: The query to use.
|
||||
:param context: Similar documents to the query used as context.
|
||||
:param prompt: Gets an answer based on the given query and context by passing it to an LLM.
|
||||
:type prompt: str
|
||||
:return: The answer.
|
||||
:rtype: _type_
|
||||
"""
|
||||
|
||||
return self.get_llm_model_answer(prompt)
|
||||
|
||||
def access_search_and_get_results(self, input_query):
|
||||
def access_search_and_get_results(self, input_query: str):
|
||||
"""
|
||||
Search the internet for additional context
|
||||
|
||||
:param input_query: search query
|
||||
:type input_query: str
|
||||
:return: Search results
|
||||
:rtype: Unknown
|
||||
"""
|
||||
from langchain.tools import DuckDuckGoSearchRun
|
||||
|
||||
search = DuckDuckGoSearchRun()
|
||||
logging.info(f"Access search to get answers for {input_query}")
|
||||
return search.run(input_query)
|
||||
|
||||
def _stream_query_response(self, answer):
|
||||
def _stream_query_response(self, answer: Any) -> Generator[Any, Any, None]:
|
||||
"""Generator to be used as streaming response
|
||||
|
||||
:param answer: Answer chunk from llm
|
||||
:type answer: Any
|
||||
:yield: Answer chunk from llm
|
||||
:rtype: Generator[Any, Any, None]
|
||||
"""
|
||||
streamed_answer = ""
|
||||
for chunk in answer:
|
||||
streamed_answer = streamed_answer + chunk
|
||||
yield chunk
|
||||
logging.info(f"Answer: {streamed_answer}")
|
||||
|
||||
def _stream_chat_response(self, answer):
|
||||
def _stream_chat_response(self, answer: Any) -> Generator[Any, Any, None]:
|
||||
"""Generator to be used as streaming response
|
||||
|
||||
:param answer: Answer chunk from llm
|
||||
:type answer: Any
|
||||
:yield: Answer chunk from llm
|
||||
:rtype: Generator[Any, Any, None]
|
||||
"""
|
||||
streamed_answer = ""
|
||||
for chunk in answer:
|
||||
streamed_answer = streamed_answer + chunk
|
||||
@@ -110,23 +155,24 @@ class BaseLlm(JSONSerializable):
|
||||
self.memory.chat_memory.add_ai_message(streamed_answer)
|
||||
logging.info(f"Answer: {streamed_answer}")
|
||||
|
||||
def query(self, input_query, contexts, config: BaseLlmConfig = None, dry_run=False, where=None):
|
||||
def query(self, input_query: str, contexts: List[str], config: BaseLlmConfig = None, dry_run=False):
|
||||
"""
|
||||
Queries the vector database based on the given input query.
|
||||
Gets relevant doc based on the query and then passes it to an
|
||||
LLM as context to get the answer.
|
||||
|
||||
:param input_query: The query to use.
|
||||
:param config: Optional. The `LlmConfig` instance to use as configuration options.
|
||||
This is used for one method call. To persistently use a config, declare it during app init.
|
||||
:param dry_run: Optional. A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response.
|
||||
You can use it to test your prompt, including the context provided
|
||||
by the vector database's doc retrieval.
|
||||
The only thing the dry run does not consider is the cut-off due to
|
||||
the `max_tokens` parameter.
|
||||
:param where: Optional. A dictionary of key-value pairs to filter the database results.
|
||||
:return: The answer to the query.
|
||||
:type input_query: str
|
||||
:param contexts: Embeddings retrieved from the database to be used as context.
|
||||
:type contexts: List[str]
|
||||
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
|
||||
To persistently use a config, declare it during app init., defaults to None
|
||||
:type config: Optional[BaseLlmConfig], optional
|
||||
:param dry_run: A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response., defaults to False
|
||||
:type dry_run: bool, optional
|
||||
:return: The answer to the query or the dry run result
|
||||
:rtype: str
|
||||
"""
|
||||
query_config = config or self.config
|
||||
|
||||
@@ -150,24 +196,26 @@ class BaseLlm(JSONSerializable):
|
||||
else:
|
||||
return self._stream_query_response(answer)
|
||||
|
||||
def chat(self, input_query, contexts, config: BaseLlmConfig = None, dry_run=False, where=None):
|
||||
def chat(self, input_query: str, contexts: List[str], config: BaseLlmConfig = None, dry_run=False):
|
||||
"""
|
||||
Queries the vector database on the given input query.
|
||||
Gets relevant doc based on the query and then passes it to an
|
||||
LLM as context to get the answer.
|
||||
|
||||
Maintains the whole conversation in memory.
|
||||
|
||||
:param input_query: The query to use.
|
||||
:param config: Optional. The `LlmConfig` instance to use as configuration options.
|
||||
This is used for one method call. To persistently use a config, declare it during app init.
|
||||
:param dry_run: Optional. A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response.
|
||||
You can use it to test your prompt, including the context provided
|
||||
by the vector database's doc retrieval.
|
||||
The only thing the dry run does not consider is the cut-off due to
|
||||
the `max_tokens` parameter.
|
||||
:param where: Optional. A dictionary of key-value pairs to filter the database results.
|
||||
:return: The answer to the query.
|
||||
:type input_query: str
|
||||
:param contexts: Embeddings retrieved from the database to be used as context.
|
||||
:type contexts: List[str]
|
||||
:param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
|
||||
To persistently use a config, declare it during app init., defaults to None
|
||||
:type config: Optional[BaseLlmConfig], optional
|
||||
:param dry_run: A dry run does everything except send the resulting prompt to
|
||||
the LLM. The purpose is to test the prompt, not the response., defaults to False
|
||||
:type dry_run: bool, optional
|
||||
:return: The answer to the query or the dry run result
|
||||
:rtype: str
|
||||
"""
|
||||
query_config = config or self.config
|
||||
|
||||
@@ -205,6 +253,16 @@ class BaseLlm(JSONSerializable):
|
||||
|
||||
@staticmethod
|
||||
def _get_messages(prompt: str, system_prompt: Optional[str] = None) -> List[BaseMessage]:
|
||||
"""
|
||||
Construct a list of langchain messages
|
||||
|
||||
:param prompt: User prompt
|
||||
:type prompt: str
|
||||
:param system_prompt: System prompt, defaults to None
|
||||
:type system_prompt: Optional[str], optional
|
||||
:return: List of messages
|
||||
:rtype: List[BaseMessage]
|
||||
"""
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
|
||||
messages = []
|
||||
|
||||
@@ -7,6 +7,11 @@ class BaseVectorDB(JSONSerializable):
|
||||
"""Base class for vector database."""
|
||||
|
||||
def __init__(self, config: BaseVectorDbConfig):
|
||||
"""Initialize the database. Save the config and client as an attribute.
|
||||
|
||||
:param config: Database configuration class instance.
|
||||
:type config: BaseVectorDbConfig
|
||||
"""
|
||||
self.client = self._get_or_create_db()
|
||||
self.config: BaseVectorDbConfig = config
|
||||
|
||||
@@ -23,25 +28,50 @@ class BaseVectorDB(JSONSerializable):
|
||||
raise NotImplementedError
|
||||
|
||||
def _get_or_create_collection(self):
|
||||
"""Get or create a named collection."""
|
||||
raise NotImplementedError
|
||||
|
||||
def _set_embedder(self, embedder: BaseEmbedder):
|
||||
"""
|
||||
The database needs to access the embedder sometimes, with this method you can persistently set it.
|
||||
|
||||
:param embedder: Embedder to be set as the embedder for this database.
|
||||
:type embedder: BaseEmbedder
|
||||
"""
|
||||
self.embedder = embedder
|
||||
|
||||
def get(self):
|
||||
"""Get database embeddings by id."""
|
||||
raise NotImplementedError
|
||||
|
||||
def add(self):
|
||||
"""Add to database"""
|
||||
raise NotImplementedError
|
||||
|
||||
def query(self):
|
||||
"""Query contents from vector data base based on vector similarity"""
|
||||
raise NotImplementedError
|
||||
|
||||
def count(self):
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from chromadb import Collection, QueryResult
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
from embedchain.config import ChromaDbConfig
|
||||
@@ -25,6 +26,11 @@ class ChromaDB(BaseVectorDB):
|
||||
"""Vector database using ChromaDB."""
|
||||
|
||||
def __init__(self, config: Optional[ChromaDbConfig] = None):
|
||||
"""Initialize a new ChromaDB instance
|
||||
|
||||
:param config: Configuration options for Chroma, defaults to None
|
||||
:type config: Optional[ChromaDbConfig], optional
|
||||
"""
|
||||
if config:
|
||||
self.config = config
|
||||
else:
|
||||
@@ -60,11 +66,19 @@ class ChromaDB(BaseVectorDB):
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Get or create the database."""
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Get or create the collection."""
|
||||
def _get_or_create_collection(self, name: str) -> Collection:
|
||||
"""
|
||||
Get or create a named collection.
|
||||
|
||||
:param name: Name of the collection
|
||||
:type name: str
|
||||
:raises ValueError: No embedder configured.
|
||||
:return: Created collection
|
||||
:rtype: Collection
|
||||
"""
|
||||
if not hasattr(self, "embedder") or not self.embedder:
|
||||
raise ValueError("Cannot create a Chroma database collection without an embedder.")
|
||||
self.collection = self.client.get_or_create_collection(
|
||||
@@ -76,8 +90,13 @@ class ChromaDB(BaseVectorDB):
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
|
||||
:param ids: list of doc ids to check for existence
|
||||
:type ids: List[str]
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: Existing documents.
|
||||
:rtype: List[str]
|
||||
"""
|
||||
existing_docs = self.collection.get(
|
||||
ids=ids,
|
||||
@@ -86,16 +105,28 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
return set(existing_docs["ids"])
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
|
||||
"""
|
||||
add data in vector database
|
||||
:param documents: list of texts to add
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:param ids: ids of docs
|
||||
Add vectors to chroma database
|
||||
|
||||
:param documents: Documents
|
||||
:type documents: List[str]
|
||||
:param metadatas: Metadatas
|
||||
:type metadatas: List[object]
|
||||
:param ids: ids
|
||||
:type ids: List[str]
|
||||
"""
|
||||
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
|
||||
|
||||
def _format_result(self, results):
|
||||
def _format_result(self, results: QueryResult) -> list[tuple[Document, float]]:
|
||||
"""
|
||||
Format Chroma results
|
||||
|
||||
:param results: ChromaDB query results to format.
|
||||
:type results: QueryResult
|
||||
:return: Formatted results
|
||||
:rtype: list[tuple[Document, float]]
|
||||
"""
|
||||
return [
|
||||
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
||||
for result in zip(
|
||||
@@ -107,11 +138,17 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
Query contents from vector data base based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:param where: Optional. to filter data
|
||||
:type n_results: int
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, any]
|
||||
:raises InvalidDimensionException: Dimensions do not match.
|
||||
:return: The content of the document that matched your query.
|
||||
:rtype: List[str]
|
||||
"""
|
||||
try:
|
||||
result = self.collection.query(
|
||||
@@ -132,21 +169,27 @@ class ChromaDB(BaseVectorDB):
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.config.collection_name = name
|
||||
self._get_or_create_collection(self.config.collection_name)
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count the number of embeddings.
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: The number of embeddings.
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
return self.collection.count()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
`App` does not have to be reinitialized after using this method.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
try:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List
|
||||
from typing import Dict, List, Optional, Set
|
||||
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
@@ -15,16 +15,23 @@ from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
|
||||
@register_deserializable
|
||||
class ElasticsearchDB(BaseVectorDB):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ElasticsearchDBConfig = None,
|
||||
es_config: ElasticsearchDBConfig = None, # Backwards compatibility
|
||||
config: Optional[ElasticsearchDBConfig] = None,
|
||||
es_config: Optional[ElasticsearchDBConfig] = None, # Backwards compatibility
|
||||
):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
:param es_config. elasticsearch database config to be used for connection
|
||||
:param embedding_fn: Function to generate embedding vectors.
|
||||
:param vector_dim: Vector dimension generated by embedding fn
|
||||
"""Elasticsearch as vector database.
|
||||
|
||||
:param config: Elasticsearch database config, defaults to None
|
||||
:type config: ElasticsearchDBConfig, optional
|
||||
:param es_config: `es_config` is supported as an alias for `config` (for backwards compatibility),
|
||||
defaults to None
|
||||
:type es_config: ElasticsearchDBConfig, optional
|
||||
:raises ValueError: No config provided
|
||||
"""
|
||||
if config is None and es_config is None:
|
||||
raise ValueError("ElasticsearchDBConfig is required")
|
||||
@@ -53,16 +60,22 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
self.client.indices.create(index=es_index, body=index_settings)
|
||||
|
||||
def _get_or_create_db(self):
|
||||
"""Called during initialization"""
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Note: nothing to return here. Discuss later"""
|
||||
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> Set[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
:param where: Optional. to filter data
|
||||
|
||||
:param ids: _list of doc ids to check for existance
|
||||
:type ids: List[str]
|
||||
:param where: to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: ids
|
||||
:rtype: Set[str]
|
||||
"""
|
||||
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
|
||||
if "app_id" in where:
|
||||
@@ -73,13 +86,17 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
ids = [doc["_id"] for doc in docs]
|
||||
return set(ids)
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
"""
|
||||
add data in vector database
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
|
||||
"""add data in vector database
|
||||
|
||||
:param documents: list of texts to add
|
||||
:type documents: List[str]
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:type metadatas: List[object]
|
||||
:param ids: ids of docs
|
||||
:type ids: List[str]
|
||||
"""
|
||||
|
||||
docs = []
|
||||
embeddings = self.embedder.embedding_fn(documents)
|
||||
for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
|
||||
@@ -92,14 +109,19 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
)
|
||||
bulk(self.client, docs)
|
||||
self.client.indices.refresh(index=self._get_index())
|
||||
return
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
|
||||
:param input_query: list of query string
|
||||
:type input_query: List[str]
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:type n_results: int
|
||||
:param where: Optional. to filter data
|
||||
:type where: Dict[str, any]
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
"""
|
||||
input_query_vector = self.embedder.embedding_fn(input_query)
|
||||
query_vector = input_query_vector[0]
|
||||
@@ -122,21 +144,41 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
self.config.collection_name = name
|
||||
|
||||
def count(self) -> int:
|
||||
"""
|
||||
Count number of documents/chunks embedded in the database.
|
||||
|
||||
:return: number of documents
|
||||
:rtype: int
|
||||
"""
|
||||
query = {"match_all": {}}
|
||||
response = self.client.count(index=self._get_index(), query=query)
|
||||
doc_count = response["count"]
|
||||
return doc_count
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
"""
|
||||
# Delete all data from the database
|
||||
if self.client.indices.exists(index=self._get_index()):
|
||||
# delete index in Es
|
||||
self.client.indices.delete(index=self._get_index())
|
||||
|
||||
def _get_index(self):
|
||||
def _get_index(self) -> str:
|
||||
"""Get the Elasticsearch index for a collection
|
||||
|
||||
:return: Elasticsearch index
|
||||
:rtype: str
|
||||
"""
|
||||
# NOTE: The method is preferred to an attribute, because if collection name changes,
|
||||
# it's always up-to-date.
|
||||
return f"{self.config.collection_name}_{self.embedder.vector_dimension}"
|
||||
|
||||
@@ -121,9 +121,9 @@ class TestChromaDbDuplicateHandling:
|
||||
self.app_with_settings.reset()
|
||||
|
||||
app = App(config=AppConfig(collect_metrics=False))
|
||||
app.set_collection("test_collection_1")
|
||||
app.set_collection_name("test_collection_1")
|
||||
app.db.collection.add(embeddings=[[0, 0, 0]], ids=["0"])
|
||||
app.set_collection("test_collection_2")
|
||||
app.set_collection_name("test_collection_2")
|
||||
app.db.collection.add(embeddings=[[0, 0, 0]], ids=["0"])
|
||||
assert "Insert of existing embedding ID: 0" not in caplog.text # not
|
||||
assert "Add of existing embedding ID: 0" not in caplog.text # not
|
||||
@@ -149,16 +149,16 @@ class TestChromaDbCollection(unittest.TestCase):
|
||||
"""
|
||||
config = AppConfig(collect_metrics=False)
|
||||
app = App(config=config)
|
||||
app.set_collection(collection_name="test_collection")
|
||||
app.set_collection_name(name="test_collection")
|
||||
|
||||
self.assertEqual(app.db.collection.name, "test_collection")
|
||||
|
||||
def test_set_collection(self):
|
||||
def test_set_collection_name(self):
|
||||
"""
|
||||
Test if the `App` collection is correctly switched using the `set_collection` method.
|
||||
Test if the `App` collection is correctly switched using the `set_collection_name` method.
|
||||
"""
|
||||
app = App(config=AppConfig(collect_metrics=False))
|
||||
app.set_collection("test_collection")
|
||||
app.set_collection_name("test_collection")
|
||||
|
||||
self.assertEqual(app.db.collection.name, "test_collection")
|
||||
|
||||
@@ -170,7 +170,7 @@ class TestChromaDbCollection(unittest.TestCase):
|
||||
self.app_with_settings.reset()
|
||||
|
||||
app = App(config=AppConfig(collect_metrics=False))
|
||||
app.set_collection("test_collection_1")
|
||||
app.set_collection_name("test_collection_1")
|
||||
# Collection should be empty when created
|
||||
self.assertEqual(app.count(), 0)
|
||||
|
||||
@@ -178,13 +178,13 @@ class TestChromaDbCollection(unittest.TestCase):
|
||||
# After adding, should contain one item
|
||||
self.assertEqual(app.count(), 1)
|
||||
|
||||
app.set_collection("test_collection_2")
|
||||
app.set_collection_name("test_collection_2")
|
||||
# New collection is empty
|
||||
self.assertEqual(app.count(), 0)
|
||||
|
||||
# Adding to new collection should not effect existing collection
|
||||
app.db.collection.add(embeddings=[0, 0, 0], ids=["0"])
|
||||
app.set_collection("test_collection_1")
|
||||
app.set_collection_name("test_collection_1")
|
||||
# Should still be 1, not 2.
|
||||
self.assertEqual(app.count(), 1)
|
||||
|
||||
@@ -196,12 +196,12 @@ class TestChromaDbCollection(unittest.TestCase):
|
||||
self.app_with_settings.reset()
|
||||
|
||||
app = App(config=AppConfig(collect_metrics=False))
|
||||
app.set_collection("test_collection_1")
|
||||
app.set_collection_name("test_collection_1")
|
||||
app.db.collection.add(embeddings=[[0, 0, 0]], ids=["0"])
|
||||
del app
|
||||
|
||||
app = App(config=AppConfig(collect_metrics=False))
|
||||
app.set_collection("test_collection_1")
|
||||
app.set_collection_name("test_collection_1")
|
||||
self.assertEqual(app.count(), 1)
|
||||
|
||||
def test_parallel_collections(self):
|
||||
@@ -227,9 +227,9 @@ class TestChromaDbCollection(unittest.TestCase):
|
||||
app2.db.collection.add(embeddings=[0, 0, 0], ids=["0"])
|
||||
|
||||
# Swap names and test
|
||||
app1.set_collection("test_collection_2")
|
||||
app1.set_collection_name("test_collection_2")
|
||||
self.assertEqual(app1.count(), 1)
|
||||
app2.set_collection("test_collection_1")
|
||||
app2.set_collection_name("test_collection_1")
|
||||
self.assertEqual(app2.count(), 3)
|
||||
|
||||
def test_ids_share_collections(self):
|
||||
@@ -241,9 +241,9 @@ class TestChromaDbCollection(unittest.TestCase):
|
||||
|
||||
# Create two apps
|
||||
app1 = App(AppConfig(id="new_app_id_1", collect_metrics=False))
|
||||
app1.set_collection("one_collection")
|
||||
app1.set_collection_name("one_collection")
|
||||
app2 = App(AppConfig(id="new_app_id_2", collect_metrics=False))
|
||||
app2.set_collection("one_collection")
|
||||
app2.set_collection_name("one_collection")
|
||||
|
||||
# Add data
|
||||
app1.db.collection.add(embeddings=[[0, 0, 0], [1, 1, 1]], ids=["0", "1"])
|
||||
@@ -263,13 +263,13 @@ class TestChromaDbCollection(unittest.TestCase):
|
||||
# Create four apps.
|
||||
# app1, which we are about to reset, shares an app with one, and an id with the other, none with the last.
|
||||
app1 = App(AppConfig(id="new_app_id_1", collect_metrics=False), chromadb_config=self.chroma_config)
|
||||
app1.set_collection("one_collection")
|
||||
app1.set_collection_name("one_collection")
|
||||
app2 = App(AppConfig(id="new_app_id_2", collect_metrics=False))
|
||||
app2.set_collection("one_collection")
|
||||
app2.set_collection_name("one_collection")
|
||||
app3 = App(AppConfig(id="new_app_id_1", collect_metrics=False))
|
||||
app3.set_collection("three_collection")
|
||||
app3.set_collection_name("three_collection")
|
||||
app4 = App(AppConfig(id="new_app_id_4", collect_metrics=False))
|
||||
app4.set_collection("four_collection")
|
||||
app4.set_collection_name("four_collection")
|
||||
|
||||
# Each one of them get data
|
||||
app1.db.collection.add(embeddings=[0, 0, 0], ids=["1"])
|
||||
|
||||
Reference in New Issue
Block a user