84 lines
3.9 KiB
Python
84 lines
3.9 KiB
Python
from typing import Optional
|
|
|
|
from embedchain.config import CustomAppConfig
|
|
from embedchain.embedchain import EmbedChain
|
|
from embedchain.embedder.base_embedder import BaseEmbedder
|
|
from embedchain.helper_classes.json_serializable import register_deserializable
|
|
from embedchain.llm.base_llm import BaseLlm
|
|
from embedchain.vectordb.base_vector_db import BaseVectorDB
|
|
|
|
|
|
@register_deserializable
|
|
class CustomApp(EmbedChain):
|
|
"""
|
|
Embedchain's custom app allows for most flexibility.
|
|
|
|
You can craft your own mix of various LLMs, vector databases and embedding model/functions.
|
|
|
|
Methods:
|
|
add(source, data_type): adds the data from the given URL to the vector db.
|
|
query(query): finds answer to the given query using vector database and LLM.
|
|
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: Optional[CustomAppConfig] = None,
|
|
llm: BaseLlm = None,
|
|
db: BaseVectorDB = None,
|
|
embedder: BaseEmbedder = None,
|
|
system_prompt: Optional[str] = None,
|
|
):
|
|
"""
|
|
Initialize a new `CustomApp` instance. You have to choose a LLM, database and embedder.
|
|
|
|
:param config: Config for the app instance. This is the most basic configuration,
|
|
that does not fall into the LLM, database or embedder category, defaults to None
|
|
:type config: Optional[CustomAppConfig], optional
|
|
:param llm: LLM Class instance. example: `from embedchain.llm.openai_llm import OpenAiLlm`, defaults to None
|
|
:type llm: BaseLlm
|
|
:param db: The database to use for storing and retrieving embeddings,
|
|
example: `from embedchain.vectordb.chroma_db import ChromaDb`, defaults to None
|
|
:type db: BaseVectorDB
|
|
:param embedder: The embedder (embedding model and function) use to calculate embeddings.
|
|
example: `from embedchain.embedder.gpt4all_embedder import GPT4AllEmbedder`, defaults to None
|
|
:type embedder: BaseEmbedder
|
|
:param system_prompt: System prompt that will be provided to the LLM as such, defaults to None
|
|
:type system_prompt: Optional[str], optional
|
|
:raises ValueError: LLM, database or embedder has not been defined.
|
|
:raises TypeError: LLM, database or embedder is not a valid class instance.
|
|
"""
|
|
# Config is not required, it has a default
|
|
if config is None:
|
|
config = CustomAppConfig()
|
|
|
|
if llm is None:
|
|
raise ValueError("LLM must be provided for custom app. Please import from `embedchain.llm`.")
|
|
if db is None:
|
|
raise ValueError("Database must be provided for custom app. Please import from `embedchain.vectordb`.")
|
|
if embedder is None:
|
|
raise ValueError("Embedder must be provided for custom app. Please import from `embedchain.embedder`.")
|
|
|
|
if not isinstance(config, CustomAppConfig):
|
|
raise TypeError(
|
|
"Config is not a `CustomAppConfig` instance. "
|
|
"Please make sure the type is right and that you are passing an instance."
|
|
)
|
|
if not isinstance(llm, BaseLlm):
|
|
raise TypeError(
|
|
"LLM is not a `BaseLlm` instance. "
|
|
"Please make sure the type is right and that you are passing an instance."
|
|
)
|
|
if not isinstance(db, BaseVectorDB):
|
|
raise TypeError(
|
|
"Database is not a `BaseVectorDB` instance. "
|
|
"Please make sure the type is right and that you are passing an instance."
|
|
)
|
|
if not isinstance(embedder, BaseEmbedder):
|
|
raise TypeError(
|
|
"Embedder is not a `BaseEmbedder` instance. "
|
|
"Please make sure the type is right and that you are passing an instance."
|
|
)
|
|
|
|
super().__init__(config=config, llm=llm, db=db, embedder=embedder, system_prompt=system_prompt)
|