[Improvement] Add support for gpt4all through langchain (#838)
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
llm:
|
||||
provider: gpt4all
|
||||
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
|
||||
config:
|
||||
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
@@ -9,5 +9,3 @@ llm:
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'all-MiniLM-L6-v2'
|
||||
|
||||
@@ -6,8 +6,8 @@ app:
|
||||
|
||||
llm:
|
||||
provider: gpt4all
|
||||
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
|
||||
config:
|
||||
model: 'orca-mini-3b.ggmlv3.q4_0.bin'
|
||||
temperature: 0.5
|
||||
max_tokens: 1000
|
||||
top_p: 1
|
||||
@@ -23,5 +23,4 @@ vectordb:
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'all-MiniLM-L6-v2'
|
||||
deployment_name: null
|
||||
|
||||
@@ -108,8 +108,6 @@ llm:
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'all-MiniLM-L6-v2'
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
@@ -198,8 +198,6 @@ llm:
|
||||
|
||||
embedder:
|
||||
provider: gpt4all
|
||||
config:
|
||||
model: 'all-MiniLM-L6-v2'
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
from typing import Optional
|
||||
|
||||
from chromadb.utils import embedding_functions
|
||||
|
||||
from embedchain.config import BaseEmbedderConfig
|
||||
from embedchain.embedder.base import BaseEmbedder
|
||||
from embedchain.models import VectorDimensions
|
||||
@@ -9,12 +7,13 @@ from embedchain.models import VectorDimensions
|
||||
|
||||
class GPT4AllEmbedder(BaseEmbedder):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
# Note: We could use langchains GPT4ALL embedding, but it's not available in all versions.
|
||||
super().__init__(config=config)
|
||||
if self.config.model is None:
|
||||
self.config.model = "all-MiniLM-L6-v2"
|
||||
|
||||
embedding_fn = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=self.config.model)
|
||||
from langchain.embeddings import \
|
||||
GPT4AllEmbeddings as LangchainGPT4AllEmbeddings
|
||||
|
||||
embeddings = LangchainGPT4AllEmbeddings()
|
||||
embedding_fn = BaseEmbedder._langchain_default_concept(embeddings)
|
||||
self.set_embedding_fn(embedding_fn=embedding_fn)
|
||||
|
||||
vector_dimension = VectorDimensions.GPT4ALL.value
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
from typing import Iterable, Optional, Union
|
||||
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.callbacks.stdout import StdOutCallbackHandler
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
@@ -12,6 +15,7 @@ class GPT4ALLLlm(BaseLlm):
|
||||
if self.config.model is None:
|
||||
self.config.model = "orca-mini-3b.ggmlv3.q4_0.bin"
|
||||
self.instance = GPT4ALLLlm._get_instance(self.config.model)
|
||||
self.instance.streaming = config.stream
|
||||
|
||||
def get_llm_model_answer(self, prompt):
|
||||
return self._get_answer(prompt=prompt, config=self.config)
|
||||
@@ -19,13 +23,13 @@ class GPT4ALLLlm(BaseLlm):
|
||||
@staticmethod
|
||||
def _get_instance(model):
|
||||
try:
|
||||
from gpt4all import GPT4All
|
||||
from langchain.llms.gpt4all import GPT4All as LangchainGPT4All
|
||||
except ModuleNotFoundError:
|
||||
raise ModuleNotFoundError(
|
||||
"The GPT4All python package is not installed. Please install it with `pip install --upgrade embedchain[opensource]`" # noqa E501
|
||||
) from None
|
||||
|
||||
return GPT4All(model_name=model)
|
||||
return LangchainGPT4All(model=model, allow_download=True)
|
||||
|
||||
def _get_answer(self, prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
|
||||
if config.model and config.model != self.config.model:
|
||||
@@ -33,14 +37,25 @@ class GPT4ALLLlm(BaseLlm):
|
||||
"GPT4ALLLlm does not support switching models at runtime. Please create a new app instance."
|
||||
)
|
||||
|
||||
messages = []
|
||||
if config.system_prompt:
|
||||
raise ValueError("GPT4ALLLlm does not support `system_prompt`")
|
||||
messages.append(config.system_prompt)
|
||||
messages.append(prompt)
|
||||
kwargs = {
|
||||
"temp": config.temperature,
|
||||
"max_tokens": config.max_tokens,
|
||||
}
|
||||
if config.top_p:
|
||||
kwargs["top_p"] = config.top_p
|
||||
|
||||
response = self.instance.generate(
|
||||
prompt=prompt,
|
||||
streaming=config.stream,
|
||||
top_p=config.top_p,
|
||||
max_tokens=config.max_tokens,
|
||||
temp=config.temperature,
|
||||
)
|
||||
return response
|
||||
callbacks = None
|
||||
if config.stream:
|
||||
callbacks = [StreamingStdOutCallbackHandler()]
|
||||
else:
|
||||
callbacks =[StdOutCallbackHandler()]
|
||||
|
||||
response = self.instance.generate(prompts=messages, callbacks=callbacks, **kwargs)
|
||||
answer = ""
|
||||
for generations in response.generations:
|
||||
answer += " ".join(map(lambda generation: generation.text, generations))
|
||||
return answer
|
||||
|
||||
@@ -143,7 +143,7 @@ pytest-asyncio = "^0.21.1"
|
||||
[tool.poetry.extras]
|
||||
streamlit = ["streamlit"]
|
||||
community = ["llama-hub"]
|
||||
opensource = ["sentence-transformers", "torch", "gpt4all"]
|
||||
opensource = ["sentence-transformers", "torch", "gpt4all", "langchain"]
|
||||
elasticsearch = ["elasticsearch"]
|
||||
opensearch = ["opensearch-py"]
|
||||
poe = ["fastapi-poe"]
|
||||
|
||||
@@ -135,6 +135,7 @@ class TestAppFromConfig:
|
||||
|
||||
# Validate the LLM config values
|
||||
llm_config = config_data["llm"]["config"]
|
||||
assert app.llm.config.model == llm_config["model"]
|
||||
assert app.llm.config.temperature == llm_config["temperature"]
|
||||
assert app.llm.config.max_tokens == llm_config["max_tokens"]
|
||||
assert app.llm.config.top_p == llm_config["top_p"]
|
||||
@@ -148,5 +149,4 @@ class TestAppFromConfig:
|
||||
|
||||
# Validate the Embedder config values
|
||||
embedder_config = config_data["embedder"]["config"]
|
||||
assert app.embedder.config.model == embedder_config["model"]
|
||||
assert app.embedder.config.deployment_name == embedder_config["deployment_name"]
|
||||
|
||||
Reference in New Issue
Block a user