[Feature] Update db.query to return source of context (#831)

This commit is contained in:
Deven Patel
2023-10-25 22:20:32 -07:00
committed by GitHub
parent a27eeb3255
commit d77e8da3f3
13 changed files with 195 additions and 73 deletions

1
.gitignore vendored
View File

@@ -174,4 +174,5 @@ test-db
notebooks/*.yaml
.ipynb_checkpoints/
!configs/*.yaml

View File

@@ -500,13 +500,17 @@ class EmbedChain(JSONSerializable):
db_query = ClipProcessor.get_text_features(query=input_query)
contents = self.db.query(
contexts = self.db.query(
input_query=db_query,
n_results=query_config.number_documents,
where=where,
skip_embedding=(hasattr(config, "query_type") and config.query_type == "Images"),
)
return contents
if len(contexts) > 0 and isinstance(contexts[0], tuple):
contexts = list(map(lambda x: x[0], contexts))
return contexts
def query(self, input_query: str, config: BaseLlmConfig = None, dry_run=False, where: Optional[Dict] = None) -> str:
"""

View File

@@ -41,15 +41,15 @@ class LlmFactory:
class EmbedderFactory:
provider_to_class = {
"azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
"gpt4all": "embedchain.embedder.gpt4all.GPT4AllEmbedder",
"huggingface": "embedchain.embedder.huggingface.HuggingFaceEmbedder",
"vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
"azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
"openai": "embedchain.embedder.openai.OpenAIEmbedder",
"vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
}
provider_to_config_class = {
"openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
"azure_openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
"openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
}
@classmethod
@@ -72,16 +72,18 @@ class VectorDBFactory:
"elasticsearch": "embedchain.vectordb.elasticsearch.ElasticsearchDB",
"opensearch": "embedchain.vectordb.opensearch.OpenSearchDB",
"pinecone": "embedchain.vectordb.pinecone.PineconeDB",
"weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
"qdrant": "embedchain.vectordb.qdrant.QdrantDB",
"weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
"zilliz": "embedchain.vectordb.zilliz.ZillizVectorDB",
}
provider_to_config_class = {
"chroma": "embedchain.config.vectordb.chroma.ChromaDbConfig",
"elasticsearch": "embedchain.config.vectordb.elasticsearch.ElasticsearchDBConfig",
"opensearch": "embedchain.config.vectordb.opensearch.OpenSearchDBConfig",
"pinecone": "embedchain.config.vectordb.pinecone.PineconeDBConfig",
"weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
"qdrant": "embedchain.config.vectordb.qdrant.QdrantDBConfig",
"weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
"zilliz": "embedchain.config.vectordb.zilliz.ZillizDBConfig",
}
@classmethod

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple
from chromadb import Collection, QueryResult
from langchain.docstore.document import Document
@@ -191,7 +191,9 @@ class ChromaDB(BaseVectorDB):
)
]
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
"""
Query contents from vector database based on vector similarity
@@ -204,8 +206,8 @@ class ChromaDB(BaseVectorDB):
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
:type skip_embedding: bool
:raises InvalidDimensionException: Dimensions do not match.
:return: The content of the document that matched your query.
:rtype: List[str]
:return: The content of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
"""
try:
if skip_embedding:
@@ -231,8 +233,14 @@ class ChromaDB(BaseVectorDB):
" embeddings, is used to retrieve an embedding from the database."
) from None
results_formatted = self._format_result(result)
contents = [result[0].page_content for result in results_formatted]
return contents
contexts = []
for result in results_formatted:
context = result[0].page_content
metadata = result[0].metadata
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append((context, source, doc_id))
return contexts
def set_collection_name(self, name: str):
"""

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple
try:
from elasticsearch import Elasticsearch
@@ -135,7 +135,9 @@ class ElasticsearchDB(BaseVectorDB):
bulk(self.client, docs)
self.client.indices.refresh(index=self._get_index())
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
"""
query contents from vector data base based on vector similarity
@@ -147,8 +149,9 @@ class ElasticsearchDB(BaseVectorDB):
:type where: Dict[str, any]
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
:type skip_embedding: bool
:return: Database contents that are the result of the query
:rtype: List[str]
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
"""
if skip_embedding:
query_vector = input_query
@@ -156,6 +159,7 @@ class ElasticsearchDB(BaseVectorDB):
input_query_vector = self.embedder.embedding_fn(input_query)
query_vector = input_query_vector[0]
# `https://www.elastic.co/guide/en/elasticsearch/reference/7.17/query-dsl-script-score-query.html`
query = {
"script_score": {
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
@@ -167,11 +171,17 @@ class ElasticsearchDB(BaseVectorDB):
}
if "app_id" in where:
app_id = where["app_id"]
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
_source = ["text"]
query["script_score"]["query"] = {"match": {"metadata.app_id": app_id}}
_source = ["text", "metadata.url", "metadata.doc_id"]
response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
docs = response["hits"]["hits"]
contents = [doc["_source"]["text"] for doc in docs]
contents = []
for doc in docs:
context = doc["_source"]["text"]
metadata = doc["_source"]["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contents.append(tuple((context, source, doc_id)))
return contents
def set_collection_name(self, name: str):

View File

@@ -1,5 +1,5 @@
import logging
from typing import Dict, List, Optional, Set
from typing import Dict, List, Optional, Set, Tuple
try:
from opensearchpy import OpenSearch
@@ -145,7 +145,9 @@ class OpenSearchDB(BaseVectorDB):
bulk(self.client, docs)
self.client.indices.refresh(index=self._get_index())
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
"""
query contents from vector data base based on vector similarity
@@ -157,8 +159,8 @@ class OpenSearchDB(BaseVectorDB):
:type where: Dict[str, any]
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
:type skip_embedding: bool
:return: Database contents that are the result of the query
:rtype: List[str]
:return: The content of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
"""
# TODO(rupeshbansal, deshraj): Add support for skip embeddings here if already exists
embeddings = OpenAIEmbeddings()
@@ -185,7 +187,13 @@ class OpenSearchDB(BaseVectorDB):
pre_filter=pre_filter,
k=n_results,
)
contents = [doc.page_content for doc in docs]
contents = []
for doc in docs:
context = doc.page_content
source = doc.metadata["url"]
doc_id = doc.metadata["doc_id"]
contents.append(tuple((context, source, doc_id)))
return contents
def set_collection_name(self, name: str):

View File

@@ -1,5 +1,5 @@
import os
from typing import Dict, List, Optional
from typing import Dict, List, Optional, Tuple
try:
import pinecone
@@ -118,7 +118,9 @@ class PineconeDB(BaseVectorDB):
for i in range(0, len(docs), self.BATCH_SIZE):
self.client.upsert(docs[i : i + self.BATCH_SIZE])
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -129,16 +131,22 @@ class PineconeDB(BaseVectorDB):
:type where: Dict[str, any]
:param skip_embedding: Optional. if True, input_query is already embedded
:type skip_embedding: bool
:return: Database contents that are the result of the query
:rtype: List[str]
:return: The content of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
else:
query_vector = input_query
contents = self.client.query(vector=query_vector, filter=where, top_k=n_results, include_metadata=True)
embeddings = list(map(lambda content: content["metadata"]["text"], contents["matches"]))
return embeddings
data = self.client.query(vector=query_vector, filter=where, top_k=n_results, include_metadata=True)
contents = []
for doc in data["matches"]:
metadata = doc["metadata"]
context = metadata["text"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contents.append(tuple((context, source, doc_id)))
return contents
def set_collection_name(self, name: str):
"""

View File

@@ -1,7 +1,7 @@
import copy
import os
import uuid
from typing import Dict, List, Optional
from typing import Dict, List, Optional, Tuple
try:
from qdrant_client import QdrantClient
@@ -160,7 +160,9 @@ class QdrantDB(BaseVectorDB):
),
)
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -172,8 +174,8 @@ class QdrantDB(BaseVectorDB):
:param skip_embedding: A boolean flag indicating if the embedding for the documents to be added is to be
generated or not
:type skip_embedding: bool
:return: Database contents that are the result of the query
:rtype: List[str]
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
@@ -199,9 +201,14 @@ class QdrantDB(BaseVectorDB):
query_vector=query_vector,
limit=n_results,
)
response = []
for result in results:
response.append(result.payload.get("text", ""))
context = result.payload["text"]
metadata = result.payload["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
response.append(tuple((context, source, doc_id)))
return response
def count(self) -> int:
@@ -211,3 +218,15 @@ class QdrantDB(BaseVectorDB):
def reset(self):
self.client.delete_collection(collection_name=self.collection_name)
self._initialize()
def set_collection_name(self, name: str):
"""
Set the name of the collection. A collection is an isolated space for vectors.
:param name: Name of the collection.
:type name: str
"""
if not isinstance(name, str):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
self.collection_name = self._get_or_create_collection()

View File

@@ -1,6 +1,6 @@
import copy
import os
from typing import Dict, List, Optional
from typing import Dict, List, Optional, Tuple
try:
import weaviate
@@ -194,7 +194,9 @@ class WeaviateDB(BaseVectorDB):
)
batch.add_reference(obj_uuid, self.index_name, "metadata", metadata_uuid, self.index_name + "_metadata")
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -206,14 +208,15 @@ class WeaviateDB(BaseVectorDB):
:param skip_embedding: A boolean flag indicating if the embedding for the documents to be added is to be
generated or not
:type skip_embedding: bool
:return: Database contents that are the result of the query
:rtype: List[str]
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
else:
query_vector = input_query
keys = set(where.keys() if where is not None else set())
data_fields = ["text"]
if len(keys.intersection(self.metadata_keys)) != 0:
weaviate_where_operands = []
for key in keys:
@@ -231,7 +234,7 @@ class WeaviateDB(BaseVectorDB):
weaviate_where_clause = {"operator": "And", "operands": weaviate_where_operands}
results = (
self.client.query.get(self.index_name, ["text"])
self.client.query.get(self.index_name, data_fields)
.with_where(weaviate_where_clause)
.with_near_vector({"vector": query_vector})
.with_limit(n_results)
@@ -239,16 +242,13 @@ class WeaviateDB(BaseVectorDB):
)
else:
results = (
self.client.query.get(self.index_name, ["text"])
self.client.query.get(self.index_name, data_fields)
.with_near_vector({"vector": query_vector})
.with_limit(n_results)
.do()
)
matched_tokens = []
for result in results["data"]["Get"].get(self.index_name):
matched_tokens.append(result["text"])
return matched_tokens
contexts = results["data"]["Get"].get(self.index_name)
return contexts
def set_collection_name(self, name: str):
"""

View File

@@ -1,4 +1,5 @@
from typing import Dict, List, Optional
import logging
from typing import Dict, List, Optional, Tuple
from embedchain.config import ZillizDBConfig
from embedchain.helper.json_serializable import register_deserializable
@@ -61,6 +62,7 @@ class ZillizVectorDB(BaseVectorDB):
:type name: str
"""
if utility.has_collection(name):
logging.info(f"[ZillizDB]: found an existing collection {name}, make sure the auto-id is disabled.")
self.collection = Collection(name)
else:
fields = [
@@ -124,7 +126,9 @@ class ZillizVectorDB(BaseVectorDB):
self.collection.flush()
self.client.flush(self.config.collection_name)
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
"""
Query contents from vector data base based on vector similarity
@@ -135,8 +139,8 @@ class ZillizVectorDB(BaseVectorDB):
:param where: to filter data
:type where: str
:raises InvalidDimensionException: Dimensions do not match.
:return: The content of the document that matched your query.
:rtype: List[str]
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
"""
if self.collection.is_empty:
@@ -145,13 +149,14 @@ class ZillizVectorDB(BaseVectorDB):
if not isinstance(where, str):
where = None
output_fields = ["text", "url", "doc_id"]
if skip_embedding:
query_vector = input_query
query_result = self.client.search(
collection_name=self.config.collection_name,
data=query_vector,
limit=n_results,
output_fields=["text"],
output_fields=output_fields,
)
else:
@@ -162,13 +167,16 @@ class ZillizVectorDB(BaseVectorDB):
collection_name=self.config.collection_name,
data=[query_vector],
limit=n_results,
output_fields=["text"],
output_fields=output_fields,
)
doc_list = []
for query in query_result:
doc_list.append(query[0]["entity"]["text"])
data = query[0]["entity"]
context = data["text"]
source = data["url"]
doc_id = data["doc_id"]
doc_list.append(tuple((context, source, doc_id)))
return doc_list
def count(self) -> int:

View File

@@ -146,7 +146,7 @@ def test_chroma_db_collection_add_with_skip_embedding(app_with_settings):
app_with_settings.db.add(
embeddings=[[0, 0, 0]],
documents=["document"],
metadatas=[{"value": "somevalue"}],
metadatas=[{"url": "url_1", "doc_id": "doc_id_1"}],
ids=["id"],
skip_embedding=True,
)
@@ -158,13 +158,13 @@ def test_chroma_db_collection_add_with_skip_embedding(app_with_settings):
"documents": ["document"],
"embeddings": None,
"ids": ["id"],
"metadatas": [{"value": "somevalue"}],
"metadatas": [{"url": "url_1", "doc_id": "doc_id_1"}],
}
assert data == expected_value
data = app_with_settings.db.query(input_query=[0, 0, 0], where={}, n_results=1, skip_embedding=True)
expected_value = ["document"]
expected_value = [("document", "url_1", "doc_id_1")]
assert data == expected_value
app_with_settings.db.reset()
@@ -299,3 +299,35 @@ def test_chroma_db_collection_reset():
app2.db.reset()
app3.db.reset()
app4.db.reset()
def test_chroma_db_collection_query(app_with_settings):
app_with_settings.db.reset()
assert app_with_settings.db.count() == 0
app_with_settings.db.add(
embeddings=[[0, 0, 0]],
documents=["document"],
metadatas=[{"url": "url_1", "doc_id": "doc_id_1"}],
ids=["id"],
skip_embedding=True,
)
assert app_with_settings.db.count() == 1
app_with_settings.db.add(
embeddings=[[0, 1, 0]],
documents=["document2"],
metadatas=[{"url": "url_2", "doc_id": "doc_id_2"}],
ids=["id2"],
skip_embedding=True,
)
assert app_with_settings.db.count() == 2
data = app_with_settings.db.query(input_query=[0, 0, 0], where={}, n_results=2, skip_embedding=True)
expected_value = [("document", "url_1", "doc_id_1"), ("document2", "url_2", "doc_id_2")]
assert data == expected_value
app_with_settings.db.reset()

View File

@@ -31,7 +31,7 @@ class TestEsDB(unittest.TestCase):
# Create some dummy data.
embeddings = [[1, 2, 3], [4, 5, 6]]
documents = ["This is a document.", "This is another document."]
metadatas = [{}, {}]
metadatas = [{"url": "url_1", "doc_id": "doc_id_1"}, {"url": "url_2", "doc_id": "doc_id_2"}]
ids = ["doc_1", "doc_2"]
# Add the data to the database.
@@ -40,8 +40,17 @@ class TestEsDB(unittest.TestCase):
search_response = {
"hits": {
"hits": [
{"_source": {"text": "This is a document."}, "_score": 0.9},
{"_source": {"text": "This is another document."}, "_score": 0.8},
{
"_source": {"text": "This is a document.", "metadata": {"url": "url_1", "doc_id": "doc_id_1"}},
"_score": 0.9,
},
{
"_source": {
"text": "This is another document.",
"metadata": {"url": "url_2", "doc_id": "doc_id_2"},
},
"_score": 0.8,
},
]
}
}
@@ -54,7 +63,9 @@ class TestEsDB(unittest.TestCase):
results = self.db.query(query, n_results=2, where={}, skip_embedding=False)
# Assert that the results are correct.
self.assertEqual(results, ["This is a document.", "This is another document."])
self.assertEqual(
results, [("This is a document.", "url_1", "doc_id_1"), ("This is another document.", "url_2", "doc_id_2")]
)
@patch("embedchain.vectordb.elasticsearch.Elasticsearch")
def test_query_with_skip_embedding(self, mock_client):
@@ -68,7 +79,7 @@ class TestEsDB(unittest.TestCase):
# Create some dummy data.
embeddings = [[1, 2, 3], [4, 5, 6]]
documents = ["This is a document.", "This is another document."]
metadatas = [{}, {}]
metadatas = [{"url": "url_1", "doc_id": "doc_id_1"}, {"url": "url_2", "doc_id": "doc_id_2"}]
ids = ["doc_1", "doc_2"]
# Add the data to the database.
@@ -77,8 +88,17 @@ class TestEsDB(unittest.TestCase):
search_response = {
"hits": {
"hits": [
{"_source": {"text": "This is a document."}, "_score": 0.9},
{"_source": {"text": "This is another document."}, "_score": 0.8},
{
"_source": {"text": "This is a document.", "metadata": {"url": "url_1", "doc_id": "doc_id_1"}},
"_score": 0.9,
},
{
"_source": {
"text": "This is another document.",
"metadata": {"url": "url_2", "doc_id": "doc_id_2"},
},
"_score": 0.8,
},
]
}
}
@@ -91,7 +111,9 @@ class TestEsDB(unittest.TestCase):
results = self.db.query(query, n_results=2, where={}, skip_embedding=True)
# Assert that the results are correct.
self.assertEqual(results, ["This is a document.", "This is another document."])
self.assertEqual(
results, [("This is a document.", "url_1", "doc_id_1"), ("This is another document.", "url_2", "doc_id_2")]
)
def test_init_without_url(self):
# Make sure it's not loaded from env

View File

@@ -123,7 +123,7 @@ class TestZillizDBCollection:
# Mock the MilvusClient search method
with patch.object(zilliz_db.client, "search") as mock_search:
# Mock the search result
mock_search.return_value = [[{"entity": {"text": "result_doc"}}]]
mock_search.return_value = [[{"entity": {"text": "result_doc", "url": "url_1", "doc_id": "doc_id_1"}}]]
# Call the query method with skip_embedding=True
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=True)
@@ -133,11 +133,11 @@ class TestZillizDBCollection:
collection_name=mock_config.collection_name,
data=["query_text"],
limit=1,
output_fields=["text"],
output_fields=["text", "url", "doc_id"],
)
# Assert that the query result matches the expected result
assert query_result == ["result_doc"]
assert query_result == [("result_doc", "url_1", "doc_id_1")]
@patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
@patch("embedchain.vectordb.zilliz.connections", autospec=True)
@@ -162,7 +162,7 @@ class TestZillizDBCollection:
mock_embedder.embedding_fn.return_value = ["query_vector"]
# Mock the search result
mock_search.return_value = [[{"entity": {"text": "result_doc"}}]]
mock_search.return_value = [[{"entity": {"text": "result_doc", "url": "url_1", "doc_id": "doc_id_1"}}]]
# Call the query method with skip_embedding=False
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=False)
@@ -172,8 +172,8 @@ class TestZillizDBCollection:
collection_name=mock_config.collection_name,
data=["query_vector"],
limit=1,
output_fields=["text"],
output_fields=["text", "url", "doc_id"],
)
# Assert that the query result matches the expected result
assert query_result == ["result_doc"]
assert query_result == [("result_doc", "url_1", "doc_id_1")]