[Feature] Add support for vllm as llm source (#1149)

This commit is contained in:
Deshraj Yadav
2024-01-09 17:38:53 +05:30
committed by GitHub
parent 5f653e69ae
commit 0373fa231c
9 changed files with 111 additions and 15 deletions

14
configs/vllm.yaml Normal file
View File

@@ -0,0 +1,14 @@
llm:
provider: vllm
config:
model: 'meta-llama/Llama-2-70b-hf'
temperature: 0.5
top_p: 1
top_k: 10
stream: true
trust_remote_code: true
embedder:
provider: huggingface
config:
model: 'BAAI/bge-small-en-v1.5'

View File

@@ -14,6 +14,7 @@ Embedchain comes with built-in support for various popular large language models
<Card title="Cohere" href="#cohere"></Card>
<Card title="Together" href="#together"></Card>
<Card title="Ollama" href="#ollama"></Card>
<Card title="vLLM" href="#vllm"></Card>
<Card title="GPT4All" href="#gpt4all"></Card>
<Card title="JinaChat" href="#jinachat"></Card>
<Card title="Hugging Face" href="#hugging-face"></Card>
@@ -393,6 +394,34 @@ llm:
</CodeGroup>
## Ollama
Setup vLLM by following instructions given in [their docs](https://docs.vllm.ai/en/latest/getting_started/installation.html).
<CodeGroup>
```python main.py
import os
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: vllm
config:
model: 'meta-llama/Llama-2-70b-hf'
temperature: 0.5
top_p: 1
top_k: 10
stream: true
trust_remote_code: true
```
</CodeGroup>
## GPT4ALL
Install related dependencies using the following command:
@@ -515,7 +544,7 @@ app = App.from_config(config_path="config.yaml")
```yaml config.yaml
llm:
provider: huggingface
provider: huggingface
config:
endpoint: https://api-inference.huggingface.co/models/gpt2 # replace with your personal endpoint
```
@@ -525,7 +554,7 @@ If your endpoint requires additional parameters, you can pass them in the `model
```
llm:
provider: huggingface
provider: huggingface
config:
endpoint: <YOUR_ENDPOINT_URL_HERE>
model_kwargs:

View File

@@ -9,14 +9,9 @@ from typing import Any, Dict, Optional
import requests
import yaml
from embedchain.cache import (
Config,
ExactMatchEvaluation,
SearchDistanceEvaluation,
cache,
gptcache_data_manager,
gptcache_pre_function,
)
from embedchain.cache import (Config, ExactMatchEvaluation,
SearchDistanceEvaluation, cache,
gptcache_data_manager, gptcache_pre_function)
from embedchain.client import Client
from embedchain.config import AppConfig, CacheConfig, ChunkerConfig
from embedchain.constants import SQLITE_PATH

View File

@@ -73,7 +73,7 @@ class BaseLlmConfig(BaseConfig):
callbacks: Optional[List] = None,
api_key: Optional[str] = None,
endpoint: Optional[str] = None,
model_kwargs: Optional[Dict[str, Any]] = {},
model_kwargs: Optional[Dict[str, Any]] = None,
):
"""
Initializes a configuration class instance for the LLM.
@@ -115,6 +115,8 @@ class BaseLlmConfig(BaseConfig):
:type model_kwargs: Optional[Dict[str, Any]], optional
:param callbacks: Langchain callback functions to use, defaults to None
:type callbacks: Optional[List], optional
:param query_type: The type of query to use, defaults to None
:type query_type: Optional[str], optional
:raises ValueError: If the template is not valid as template should
contain $context and $query (and optionally $history)
:raises ValueError: Stream is not boolean
@@ -142,6 +144,7 @@ class BaseLlmConfig(BaseConfig):
self.api_key = api_key
self.endpoint = endpoint
self.model_kwargs = model_kwargs
if type(prompt) is str:
prompt = Template(prompt)

View File

@@ -7,7 +7,12 @@ from typing import Any, Dict, List, Optional, Tuple, Union
from dotenv import load_dotenv
from langchain.docstore.document import Document
from embedchain.cache import adapt, get_gptcache_session, gptcache_data_convert, gptcache_update_cache_callback
from embedchain.cache import (
adapt,
get_gptcache_session,
gptcache_data_convert,
gptcache_update_cache_callback,
)
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config import AddConfig, BaseLlmConfig, ChunkerConfig
from embedchain.config.base_app_config import BaseAppConfig

View File

@@ -4,7 +4,9 @@ from typing import Any, Dict, Generator, List, Optional
from langchain.schema import BaseMessage as LCBaseMessage
from embedchain.config import BaseLlmConfig
from embedchain.config.llm.base import DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE, DOCS_SITE_PROMPT_TEMPLATE
from embedchain.config.llm.base import (DEFAULT_PROMPT,
DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
DOCS_SITE_PROMPT_TEMPLATE)
from embedchain.helpers.json_serializable import JSONSerializable
from embedchain.memory.base import ChatHistory
from embedchain.memory.message import ChatMessage

40
embedchain/llm/vllm.py Normal file
View File

@@ -0,0 +1,40 @@
from typing import Iterable, Optional, Union
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_community.llms import VLLM as BaseVLLM
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class VLLM(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config=config)
if self.config.model is None:
self.config.model = "mosaicml/mpt-7b"
def get_llm_model_answer(self, prompt):
return self._get_answer(prompt=prompt, config=self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()]
# Prepare the arguments for BaseVLLM
llm_args = {
"model": config.model,
"temperature": config.temperature,
"top_p": config.top_p,
"callback_manager": CallbackManager(callback_manager),
}
# Add model_kwargs if they are not None
if config.model_kwargs is not None:
llm_args.update(config.model_kwargs)
llm = BaseVLLM(**llm_args)
return llm(prompt)

View File

@@ -6,7 +6,15 @@ from embedchain.helpers.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB
try:
from pymilvus import Collection, CollectionSchema, DataType, FieldSchema, MilvusClient, connections, utility
from pymilvus import (
Collection,
CollectionSchema,
DataType,
FieldSchema,
MilvusClient,
connections,
utility,
)
except ImportError:
raise ImportError(
"Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "embedchain"
version = "0.1.57"
version = "0.1.58"
description = "Data platform for LLMs - Load, index, retrieve and sync any unstructured data"
authors = [
"Taranjeet Singh <taranjeet@embedchain.ai>",