[Feature] Add support for vllm as llm source (#1149)
This commit is contained in:
14
configs/vllm.yaml
Normal file
14
configs/vllm.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
llm:
|
||||
provider: vllm
|
||||
config:
|
||||
model: 'meta-llama/Llama-2-70b-hf'
|
||||
temperature: 0.5
|
||||
top_p: 1
|
||||
top_k: 10
|
||||
stream: true
|
||||
trust_remote_code: true
|
||||
|
||||
embedder:
|
||||
provider: huggingface
|
||||
config:
|
||||
model: 'BAAI/bge-small-en-v1.5'
|
||||
@@ -14,6 +14,7 @@ Embedchain comes with built-in support for various popular large language models
|
||||
<Card title="Cohere" href="#cohere"></Card>
|
||||
<Card title="Together" href="#together"></Card>
|
||||
<Card title="Ollama" href="#ollama"></Card>
|
||||
<Card title="vLLM" href="#vllm"></Card>
|
||||
<Card title="GPT4All" href="#gpt4all"></Card>
|
||||
<Card title="JinaChat" href="#jinachat"></Card>
|
||||
<Card title="Hugging Face" href="#hugging-face"></Card>
|
||||
@@ -393,6 +394,34 @@ llm:
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## Ollama
|
||||
|
||||
Setup vLLM by following instructions given in [their docs](https://docs.vllm.ai/en/latest/getting_started/installation.html).
|
||||
|
||||
<CodeGroup>
|
||||
|
||||
```python main.py
|
||||
import os
|
||||
from embedchain import App
|
||||
|
||||
# load llm configuration from config.yaml file
|
||||
app = App.from_config(config_path="config.yaml")
|
||||
```
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: vllm
|
||||
config:
|
||||
model: 'meta-llama/Llama-2-70b-hf'
|
||||
temperature: 0.5
|
||||
top_p: 1
|
||||
top_k: 10
|
||||
stream: true
|
||||
trust_remote_code: true
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
|
||||
## GPT4ALL
|
||||
|
||||
Install related dependencies using the following command:
|
||||
@@ -515,7 +544,7 @@ app = App.from_config(config_path="config.yaml")
|
||||
|
||||
```yaml config.yaml
|
||||
llm:
|
||||
provider: huggingface
|
||||
provider: huggingface
|
||||
config:
|
||||
endpoint: https://api-inference.huggingface.co/models/gpt2 # replace with your personal endpoint
|
||||
```
|
||||
@@ -525,7 +554,7 @@ If your endpoint requires additional parameters, you can pass them in the `model
|
||||
|
||||
```
|
||||
llm:
|
||||
provider: huggingface
|
||||
provider: huggingface
|
||||
config:
|
||||
endpoint: <YOUR_ENDPOINT_URL_HERE>
|
||||
model_kwargs:
|
||||
|
||||
@@ -9,14 +9,9 @@ from typing import Any, Dict, Optional
|
||||
import requests
|
||||
import yaml
|
||||
|
||||
from embedchain.cache import (
|
||||
Config,
|
||||
ExactMatchEvaluation,
|
||||
SearchDistanceEvaluation,
|
||||
cache,
|
||||
gptcache_data_manager,
|
||||
gptcache_pre_function,
|
||||
)
|
||||
from embedchain.cache import (Config, ExactMatchEvaluation,
|
||||
SearchDistanceEvaluation, cache,
|
||||
gptcache_data_manager, gptcache_pre_function)
|
||||
from embedchain.client import Client
|
||||
from embedchain.config import AppConfig, CacheConfig, ChunkerConfig
|
||||
from embedchain.constants import SQLITE_PATH
|
||||
|
||||
@@ -73,7 +73,7 @@ class BaseLlmConfig(BaseConfig):
|
||||
callbacks: Optional[List] = None,
|
||||
api_key: Optional[str] = None,
|
||||
endpoint: Optional[str] = None,
|
||||
model_kwargs: Optional[Dict[str, Any]] = {},
|
||||
model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for the LLM.
|
||||
@@ -115,6 +115,8 @@ class BaseLlmConfig(BaseConfig):
|
||||
:type model_kwargs: Optional[Dict[str, Any]], optional
|
||||
:param callbacks: Langchain callback functions to use, defaults to None
|
||||
:type callbacks: Optional[List], optional
|
||||
:param query_type: The type of query to use, defaults to None
|
||||
:type query_type: Optional[str], optional
|
||||
:raises ValueError: If the template is not valid as template should
|
||||
contain $context and $query (and optionally $history)
|
||||
:raises ValueError: Stream is not boolean
|
||||
@@ -142,6 +144,7 @@ class BaseLlmConfig(BaseConfig):
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
self.model_kwargs = model_kwargs
|
||||
|
||||
if type(prompt) is str:
|
||||
prompt = Template(prompt)
|
||||
|
||||
|
||||
@@ -7,7 +7,12 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from dotenv import load_dotenv
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
from embedchain.cache import adapt, get_gptcache_session, gptcache_data_convert, gptcache_update_cache_callback
|
||||
from embedchain.cache import (
|
||||
adapt,
|
||||
get_gptcache_session,
|
||||
gptcache_data_convert,
|
||||
gptcache_update_cache_callback,
|
||||
)
|
||||
from embedchain.chunkers.base_chunker import BaseChunker
|
||||
from embedchain.config import AddConfig, BaseLlmConfig, ChunkerConfig
|
||||
from embedchain.config.base_app_config import BaseAppConfig
|
||||
|
||||
@@ -4,7 +4,9 @@ from typing import Any, Dict, Generator, List, Optional
|
||||
from langchain.schema import BaseMessage as LCBaseMessage
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.config.llm.base import DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE, DOCS_SITE_PROMPT_TEMPLATE
|
||||
from embedchain.config.llm.base import (DEFAULT_PROMPT,
|
||||
DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
|
||||
DOCS_SITE_PROMPT_TEMPLATE)
|
||||
from embedchain.helpers.json_serializable import JSONSerializable
|
||||
from embedchain.memory.base import ChatHistory
|
||||
from embedchain.memory.message import ChatMessage
|
||||
|
||||
40
embedchain/llm/vllm.py
Normal file
40
embedchain/llm/vllm.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from typing import Iterable, Optional, Union
|
||||
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
from langchain.callbacks.stdout import StdOutCallbackHandler
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain_community.llms import VLLM as BaseVLLM
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class VLLM(BaseLlm):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config=config)
|
||||
if self.config.model is None:
|
||||
self.config.model = "mosaicml/mpt-7b"
|
||||
|
||||
def get_llm_model_answer(self, prompt):
|
||||
return self._get_answer(prompt=prompt, config=self.config)
|
||||
|
||||
@staticmethod
|
||||
def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
|
||||
callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()]
|
||||
|
||||
# Prepare the arguments for BaseVLLM
|
||||
llm_args = {
|
||||
"model": config.model,
|
||||
"temperature": config.temperature,
|
||||
"top_p": config.top_p,
|
||||
"callback_manager": CallbackManager(callback_manager),
|
||||
}
|
||||
|
||||
# Add model_kwargs if they are not None
|
||||
if config.model_kwargs is not None:
|
||||
llm_args.update(config.model_kwargs)
|
||||
|
||||
llm = BaseVLLM(**llm_args)
|
||||
return llm(prompt)
|
||||
@@ -6,7 +6,15 @@ from embedchain.helpers.json_serializable import register_deserializable
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
|
||||
try:
|
||||
from pymilvus import Collection, CollectionSchema, DataType, FieldSchema, MilvusClient, connections, utility
|
||||
from pymilvus import (
|
||||
Collection,
|
||||
CollectionSchema,
|
||||
DataType,
|
||||
FieldSchema,
|
||||
MilvusClient,
|
||||
connections,
|
||||
utility,
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "embedchain"
|
||||
version = "0.1.57"
|
||||
version = "0.1.58"
|
||||
description = "Data platform for LLMs - Load, index, retrieve and sync any unstructured data"
|
||||
authors = [
|
||||
"Taranjeet Singh <taranjeet@embedchain.ai>",
|
||||
|
||||
Reference in New Issue
Block a user