Files
t6_mem0/embedchain/vectordb/zilliz.py
2024-01-09 17:38:53 +05:30

239 lines
7.9 KiB
Python

import logging
from typing import Any, Dict, List, Optional, Tuple, Union
from embedchain.config import ZillizDBConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB
try:
from pymilvus import (
Collection,
CollectionSchema,
DataType,
FieldSchema,
MilvusClient,
connections,
utility,
)
except ImportError:
raise ImportError(
"Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"
) from None
@register_deserializable
class ZillizVectorDB(BaseVectorDB):
"""Base class for vector database."""
def __init__(self, config: ZillizDBConfig = None):
"""Initialize the database. Save the config and client as an attribute.
:param config: Database configuration class instance.
:type config: ZillizDBConfig
"""
if config is None:
self.config = ZillizDBConfig()
else:
self.config = config
self.client = MilvusClient(
uri=self.config.uri,
token=self.config.token,
)
self.connection = connections.connect(
uri=self.config.uri,
token=self.config.token,
)
super().__init__(config=self.config)
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
So it's can't be done in __init__ in one step.
"""
self._get_or_create_collection(self.config.collection_name)
def _get_or_create_db(self):
"""Get or create the database."""
return self.client
def _get_or_create_collection(self, name):
"""
Get or create a named collection.
:param name: Name of the collection
:type name: str
"""
if utility.has_collection(name):
logging.info(f"[ZillizDB]: found an existing collection {name}, make sure the auto-id is disabled.")
self.collection = Collection(name)
else:
fields = [
FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=512),
FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=2048),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=self.embedder.vector_dimension),
]
schema = CollectionSchema(fields, enable_dynamic_field=True)
self.collection = Collection(name=name, schema=schema)
index = {
"index_type": "AUTOINDEX",
"metric_type": self.config.metric_type,
}
self.collection.create_index("embeddings", index)
return self.collection
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
"""
Get existing doc ids present in vector database
:param ids: list of doc ids to check for existence
:type ids: List[str]
:param where: Optional. to filter data
:type where: Dict[str, Any]
:param limit: Optional. maximum number of documents
:type limit: Optional[int]
:return: Existing documents.
:rtype: Set[str]
"""
if ids is None or len(ids) == 0 or self.collection.num_entities == 0:
return {"ids": []}
if not self.collection.is_empty:
filter_ = f"id in {ids}"
results = self.client.query(
collection_name=self.config.collection_name, filter=filter_, output_fields=["id"]
)
results = [res["id"] for res in results]
return {"ids": set(results)}
def add(
self,
embeddings: List[List[float]],
documents: List[str],
metadatas: List[object],
ids: List[str],
**kwargs: Optional[Dict[str, any]],
):
"""Add to database"""
embeddings = self.embedder.embedding_fn(documents)
for id, doc, metadata, embedding in zip(ids, documents, metadatas, embeddings):
data = {**metadata, "id": id, "text": doc, "embeddings": embedding}
self.client.insert(collection_name=self.config.collection_name, data=data, **kwargs)
self.collection.load()
self.collection.flush()
self.client.flush(self.config.collection_name)
def query(
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
citations: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> Union[List[Tuple[str, Dict]], List[str]]:
"""
Query contents from vector database based on vector similarity
:param input_query: list of query string
:type input_query: List[str]
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: to filter data
:type where: str
:raises InvalidDimensionException: Dimensions do not match.
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if self.collection.is_empty:
return []
if not isinstance(where, str):
where = None
output_fields = ["*"]
input_query_vector = self.embedder.embedding_fn([input_query])
query_vector = input_query_vector[0]
query_result = self.client.search(
collection_name=self.config.collection_name,
data=[query_vector],
limit=n_results,
output_fields=output_fields,
**kwargs,
)
query_result = query_result[0]
contexts = []
for query in query_result:
data = query["entity"]
score = query["distance"]
context = data["text"]
if "embeddings" in data:
data.pop("embeddings")
if citations:
data["score"] = score
contexts.append(tuple((context, data)))
else:
contexts.append(context)
return contexts
def count(self) -> int:
"""
Count number of documents/chunks embedded in the database.
:return: number of documents
:rtype: int
"""
return self.collection.num_entities
def reset(self, collection_names: List[str] = None):
"""
Resets the database. Deletes all embeddings irreversibly.
"""
if self.config.collection_name:
if collection_names:
for collection_name in collection_names:
if collection_name in self.client.list_collections():
self.client.drop_collection(collection_name=collection_name)
else:
self.client.drop_collection(collection_name=self.config.collection_name)
self._get_or_create_collection(self.config.collection_name)
def set_collection_name(self, name: str):
"""
Set the name of the collection. A collection is an isolated space for vectors.
:param name: Name of the collection.
:type name: str
"""
if not isinstance(name, str):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
def delete(self, keys: Union[list, str, int]):
"""
Delete the embeddings from DB. Zilliz only support deleting with keys.
:param keys: Primary keys of the table entries to delete.
:type keys: Union[list, str, int]
"""
self.client.delete(
collection_name=self.config.collection_name,
pks=keys,
)