feat: add support for Elastcisearch as vector data source (#402)

This commit is contained in:
Prashant Chaudhary
2023-08-11 09:23:56 +05:30
committed by GitHub
parent f0abfea55d
commit 0179141b2e
17 changed files with 415 additions and 34 deletions

View File

@@ -0,0 +1,34 @@
---
title: '💾 Vector Database'
---
We support `Chroma` and `Elasticsearch` as two vector database.
`Chroma` is used as a default database.
### Elasticsearch
In order to use `Elasticsearch` as vector database we need to use App type `CustomApp`.
```python
import os
from embedchain import CustomApp
from embedchain.config import CustomAppConfig, ElasticsearchDBConfig
from embedchain.models import Providers, EmbeddingFunctions, VectorDatabases
os.environ["OPENAI_API_KEY"] = 'OPENAI_API_KEY'
es_config = ElasticsearchDBConfig(
# elasticsearch url or list of nodes url with different hosts and ports.
es_url='http://localhost:9200',
# pass named parameters supported by Python Elasticsearch client
ca_certs="/path/to/http_ca.crt",
basic_auth=("username", "password")
)
config = CustomAppConfig(
embedding_fn=EmbeddingFunctions.OPENAI,
provider=Providers.OPENAI,
db_type=VectorDatabases.ELASTICSEARCH,
es_config=es_config,
)
es_app = CustomApp(config)
```
- Set `db_type=VectorDatabases.ELASTICSEARCH` and `es_config=ElasticsearchDBConfig(es_url='')` in `CustomAppConfig`.
- `ElasticsearchDBConfig` accepts `es_url` as elasticsearch url or as list of nodes url with different hosts and ports. Additionally we can pass named paramaters supported by Python Elasticsearch client.

View File

@@ -32,7 +32,7 @@
},
{
"group": "Advanced",
"pages": ["advanced/app_types", "advanced/interface_types", "advanced/adding_data","advanced/data_types", "advanced/query_configuration", "advanced/configuration", "advanced/testing", "advanced/showcase"]
"pages": ["advanced/app_types", "advanced/interface_types", "advanced/adding_data","advanced/data_types", "advanced/query_configuration", "advanced/configuration", "advanced/testing", "advanced/vector_database", "advanced/showcase"]
},
{
"group": "Examples",

View File

@@ -5,3 +5,4 @@ from .apps.OpenSourceAppConfig import OpenSourceAppConfig # noqa: F401
from .BaseConfig import BaseConfig # noqa: F401
from .ChatConfig import ChatConfig # noqa: F401
from .QueryConfig import QueryConfig # noqa: F401
from .vectordbs.ElasticsearchDBConfig import ElasticsearchDBConfig # noqa: F401

View File

@@ -1,6 +1,8 @@
import logging
from embedchain.config.BaseConfig import BaseConfig
from embedchain.config.vectordbs import ElasticsearchDBConfig
from embedchain.models import VectorDatabases, VectorDimensions
class BaseAppConfig(BaseConfig):
@@ -8,7 +10,19 @@ class BaseAppConfig(BaseConfig):
Parent config to initialize an instance of `App`, `OpenSourceApp` or `CustomApp`.
"""
def __init__(self, log_level=None, embedding_fn=None, db=None, host=None, port=None, id=None, collection_name=None):
def __init__(
self,
log_level=None,
embedding_fn=None,
db=None,
host=None,
port=None,
id=None,
collection_name=None,
db_type: VectorDatabases = None,
vector_dim: VectorDimensions = None,
es_config: ElasticsearchDBConfig = None,
):
"""
:param log_level: Optional. (String) Debug level
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
@@ -18,27 +32,53 @@ class BaseAppConfig(BaseConfig):
:param port: Optional. Port for the database server.
:param id: Optional. ID of the app. Document metadata will have this id.
:param collection_name: Optional. Collection name for the database.
:param db_type: Optional. type of Vector database to use
:param vector_dim: Vector dimension generated by embedding fn
:param es_config: Optional. elasticsearch database config to be used for connection
"""
self._setup_logging(log_level)
self.db = db if db else BaseAppConfig.default_db(embedding_fn=embedding_fn, host=host, port=port)
self.collection_name = collection_name if collection_name else "embedchain_store"
self.db = BaseAppConfig.get_db(
db=db,
embedding_fn=embedding_fn,
host=host,
port=port,
db_type=db_type,
vector_dim=vector_dim,
collection_name=self.collection_name,
es_config=es_config,
)
self.id = id
return
@staticmethod
def default_db(embedding_fn, host, port):
def get_db(db, embedding_fn, host, port, db_type, vector_dim, collection_name, es_config):
"""
Sets database to default (`ChromaDb`).
Get db based on db_type, db with default database (`ChromaDb`)
:param Optional. (Vector) database to use for embeddings.
:param embedding_fn: Embedding function to use in database.
:param host: Optional. Hostname for the database server.
:param port: Optional. Port for the database server.
:returns: Default database
:param db_type: Optional. db type to use. Supported values (`es`, `chroma`)
:param vector_dim: Vector dimension generated by embedding fn
:param collection_name: Optional. Collection name for the database.
:param es_config: Optional. elasticsearch database config to be used for connection
:raises ValueError: BaseAppConfig knows no default embedding function.
:returns: database instance
"""
if db:
return db
if embedding_fn is None:
raise ValueError("ChromaDb cannot be instantiated without an embedding function")
if db_type == VectorDatabases.ELASTICSEARCH:
from embedchain.vectordb.elasticsearch_db import ElasticsearchDB
return ElasticsearchDB(
embedding_fn=embedding_fn, vector_dim=vector_dim, collection_name=collection_name, es_config=es_config
)
from embedchain.vectordb.chroma_db import ChromaDB
return ChromaDB(embedding_fn=embedding_fn, host=host, port=port)

View File

@@ -3,7 +3,8 @@ from typing import Any
from chromadb.api.types import Documents, Embeddings
from dotenv import load_dotenv
from embedchain.models import EmbeddingFunctions, Providers
from embedchain.config.vectordbs import ElasticsearchDBConfig
from embedchain.models import EmbeddingFunctions, Providers, VectorDatabases, VectorDimensions
from .BaseAppConfig import BaseAppConfig
@@ -28,6 +29,8 @@ class CustomAppConfig(BaseAppConfig):
provider: Providers = None,
open_source_app_config=None,
deployment_name=None,
db_type: VectorDatabases = None,
es_config: ElasticsearchDBConfig = None,
):
"""
:param log_level: Optional. (String) Debug level
@@ -41,6 +44,8 @@ class CustomAppConfig(BaseAppConfig):
:param collection_name: Optional. Collection name for the database.
:param provider: Optional. (Providers): LLM Provider to use.
:param open_source_app_config: Optional. Config instance needed for open source apps.
:param db_type: Optional. type of Vector database to use.
:param es_config: Optional. elasticsearch database config to be used for connection
"""
if provider:
self.provider = provider
@@ -59,6 +64,9 @@ class CustomAppConfig(BaseAppConfig):
port=port,
id=id,
collection_name=collection_name,
db_type=db_type,
vector_dim=CustomAppConfig.get_vector_dimension(embedding_function=embedding_fn),
es_config=es_config,
)
@staticmethod
@@ -108,3 +116,20 @@ class CustomAppConfig(BaseAppConfig):
from chromadb.utils import embedding_functions
return embedding_functions.SentenceTransformerEmbeddingFunction(model_name=model)
@staticmethod
def get_vector_dimension(embedding_function: EmbeddingFunctions):
if not isinstance(embedding_function, EmbeddingFunctions):
raise ValueError(f"Invalid option: '{embedding_function}'.")
if embedding_function == EmbeddingFunctions.OPENAI:
return VectorDimensions.OPENAI.value
elif embedding_function == EmbeddingFunctions.HUGGING_FACE:
return VectorDimensions.HUGGING_FACE.value
elif embedding_function == EmbeddingFunctions.VERTEX_AI:
return VectorDimensions.VERTEX_AI.value
elif embedding_function == EmbeddingFunctions.GPT4ALL:
return VectorDimensions.GPT4ALL.value

View File

@@ -0,0 +1,15 @@
from typing import Dict, List, Union
from embedchain.config.BaseConfig import BaseConfig
class ElasticsearchDBConfig(BaseConfig):
"""
Config to initialize an elasticsearch client.
:param es_url. elasticsearch url or list of nodes url to be used for connection
:param ES_EXTRA_PARAMS: extra params dict that can be passed to elasticsearch.
"""
def __init__(self, es_url: Union[str, List[str]] = None, **ES_EXTRA_PARAMS: Dict[str, any]):
self.ES_URL = es_url
self.ES_EXTRA_PARAMS = ES_EXTRA_PARAMS

View File

View File

@@ -1,7 +1,6 @@
import logging
import os
from chromadb.errors import InvalidDimensionException
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.memory import ConversationBufferMemory
@@ -31,8 +30,8 @@ class EmbedChain:
"""
self.config = config
self.db_client = self.config.db.client
self.collection = self.config.db._get_or_create_collection(self.config.collection_name)
self.db = self.config.db
self.user_asks = []
self.is_docs_site_instance = False
self.online = False
@@ -99,11 +98,10 @@ class EmbedChain:
# get existing ids, and discard doc if any common id exist.
where = {"app_id": self.config.id} if self.config.id is not None else {}
# where={"url": src}
existing_docs = self.collection.get(
existing_ids = self.db.get(
ids=ids,
where=where, # optional filter
)
existing_ids = set(existing_docs["ids"])
if len(existing_ids):
data_dict = {id: (doc, meta) for id, doc, meta in zip(ids, documents, metadatas)}
@@ -128,7 +126,7 @@ class EmbedChain:
# Add metadata to each document
metadatas_with_metadata = [{**meta, **metadata} for meta in metadatas]
self.collection.add(documents=documents, metadatas=list(metadatas_with_metadata), ids=ids)
self.db.add(documents=documents, metadatas=list(metadatas_with_metadata), ids=ids)
print((f"Successfully saved {src}. New chunks count: " f"{self.count() - chunks_before_addition}"))
def _format_result(self, results):
@@ -156,23 +154,13 @@ class EmbedChain:
:param config: The query configuration.
:return: The content of the document that matched your query.
"""
try:
where = {"app_id": self.config.id} if self.config.id is not None else {} # optional filter
result = self.collection.query(
query_texts=[
input_query,
],
n_results=config.number_documents,
where=where,
)
except InvalidDimensionException as e:
raise InvalidDimensionException(
e.message()
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
) from None
where = {"app_id": self.config.id} if self.config.id is not None else {} # optional filter
contents = self.db.query(
input_query=input_query,
n_results=config.number_documents,
where=where,
)
results_formatted = self._format_result(result)
contents = [result[0].page_content for result in results_formatted]
return contents
def _append_search_and_context(self, context, web_search_result):
@@ -339,11 +327,11 @@ class EmbedChain:
:return: The number of embeddings.
"""
return self.collection.count()
return self.db.count()
def reset(self):
"""
Resets the database. Deletes all embeddings irreversibly.
`App` has to be reinitialized after using this method.
"""
self.db_client.reset()
self.db.reset()

View File

@@ -0,0 +1,6 @@
from enum import Enum
class VectorDatabases(Enum):
CHROMADB = "CHROMADB"
ELASTICSEARCH = "ELASTICSEARCH"

View File

@@ -0,0 +1,9 @@
from enum import Enum
# vector length created by embedding fn
class VectorDimensions(Enum):
GPT4ALL = 384
OPENAI = 1536
VERTEX_AI = 768
HUGGING_FACE = 384

View File

@@ -1,2 +1,4 @@
from .EmbeddingFunctions import EmbeddingFunctions # noqa: F401
from .Providers import Providers # noqa: F401
from .VectorDatabases import VectorDatabases # noqa: F401
from .VectorDimensions import VectorDimensions # noqa: F401

View File

@@ -10,3 +10,18 @@ class BaseVectorDB:
def _get_or_create_collection(self):
raise NotImplementedError
def get(self):
raise NotImplementedError
def add(self):
raise NotImplementedError
def query(self):
raise NotImplementedError
def count(self):
raise NotImplementedError
def reset(self):
raise NotImplementedError

View File

@@ -1,4 +1,8 @@
import logging
from typing import Any, Dict, List
from chromadb.errors import InvalidDimensionException
from langchain.docstore.document import Document
try:
import chromadb
@@ -7,6 +11,7 @@ except RuntimeError:
use_pysqlite3()
import chromadb
from chromadb.config import Settings
from embedchain.vectordb.base_vector_db import BaseVectorDB
@@ -41,7 +46,73 @@ class ChromaDB(BaseVectorDB):
def _get_or_create_collection(self, name):
"""Get or create the collection."""
return self.client.get_or_create_collection(
self.collection = self.client.get_or_create_collection(
name=name,
embedding_function=self.embedding_fn,
)
return self.collection
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
"""
Get existing doc ids present in vector database
:param ids: list of doc ids to check for existance
:param where: Optional. to filter data
"""
existing_docs = self.collection.get(
ids=ids,
where=where, # optional filter
)
return set(existing_docs["ids"])
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
"""
add data in vector database
:param documents: list of texts to add
:param metadatas: list of metadata associated with docs
:param ids: ids of docs
"""
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
def _format_result(self, results):
return [
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
for result in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0],
)
]
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
"""
query contents from vector data base based on vector similarity
:param input_query: list of query string
:param n_results: no of similar documents to fetch from database
:param where: Optional. to filter data
:return: The content of the document that matched your query.
"""
try:
result = self.collection.query(
query_texts=[
input_query,
],
n_results=n_results,
where=where,
)
except InvalidDimensionException as e:
raise InvalidDimensionException(
e.message()
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
) from None
results_formatted = self._format_result(result)
contents = [result[0].page_content for result in results_formatted]
return contents
def count(self) -> int:
return self.collection.count()
def reset(self):
# Delete all data from the database
self.client.reset()

View File

@@ -0,0 +1,136 @@
from typing import Any, Callable, Dict, List
try:
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
"Elasticsearch requires extra dependencies. Install with `pip install embedchain[elasticsearch]`"
) from None
from embedchain.config import ElasticsearchDBConfig
from embedchain.models.VectorDimensions import VectorDimensions
from embedchain.vectordb.base_vector_db import BaseVectorDB
class ElasticsearchDB(BaseVectorDB):
def __init__(
self,
es_config: ElasticsearchDBConfig = None,
embedding_fn: Callable[[list[str]], list[str]] = None,
vector_dim: VectorDimensions = None,
collection_name: str = None,
):
"""
Elasticsearch as vector database
:param es_config. elasticsearch database config to be used for connection
:param embedding_fn: Function to generate embedding vectors.
:param vector_dim: Vector dimension generated by embedding fn
:param collection_name: Optional. Collection name for the database.
"""
if not hasattr(embedding_fn, "__call__"):
raise ValueError("Embedding function is not a function")
if es_config is None:
raise ValueError("ElasticsearchDBConfig is required")
if vector_dim is None:
raise ValueError("Vector Dimension is required to refer correct index and mapping")
if collection_name is None:
raise ValueError("collection name is required. It cannot be empty")
self.embedding_fn = embedding_fn
self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
self.vector_dim = vector_dim
self.es_index = f"{collection_name}_{self.vector_dim}"
index_settings = {
"mappings": {
"properties": {
"text": {"type": "text"},
"text_vector": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
}
}
}
if not self.client.indices.exists(index=self.es_index):
# create index if not exist
print("Creating index", self.es_index, index_settings)
self.client.indices.create(index=self.es_index, body=index_settings)
super().__init__()
def _get_or_create_db(self):
return self.client
def _get_or_create_collection(self, name):
"""Note: nothing to return here. Discuss later"""
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
"""
Get existing doc ids present in vector database
:param ids: list of doc ids to check for existance
:param where: Optional. to filter data
"""
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
if "app_id" in where:
app_id = where["app_id"]
query["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
response = self.client.search(index=self.es_index, query=query, _source=False)
docs = response["hits"]["hits"]
ids = [doc["_id"] for doc in docs]
return set(ids)
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
"""
add data in vector database
:param documents: list of texts to add
:param metadatas: list of metadata associated with docs
:param ids: ids of docs
"""
docs = []
embeddings = self.embedding_fn(documents)
for id, text, metadata, text_vector in zip(ids, documents, metadatas, embeddings):
docs.append(
{
"_index": self.es_index,
"_id": id,
"_source": {"text": text, "metadata": metadata, "text_vector": text_vector},
}
)
bulk(self.client, docs)
self.client.indices.refresh(index=self.es_index)
return
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
"""
query contents from vector data base based on vector similarity
:param input_query: list of query string
:param n_results: no of similar documents to fetch from database
:param where: Optional. to filter data
"""
input_query_vector = self.embedding_fn(input_query)
query_vector = input_query_vector[0]
query = {
"script_score": {
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
"script": {
"source": "cosineSimilarity(params.input_query_vector, 'text_vector') + 1.0",
"params": {"input_query_vector": query_vector},
},
}
}
if "app_id" in where:
app_id = where["app_id"]
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
_source = ["text"]
response = self.client.search(index=self.es_index, query=query, _source=_source, size=n_results)
docs = response["hits"]["hits"]
contents = [doc["_source"]["text"] for doc in docs]
return contents
def count(self) -> int:
query = {"match_all": {}}
response = self.client.count(index=self.es_index, query=query)
doc_count = response["count"]
return doc_count
def reset(self):
# Delete all data from the database
if self.client.indices.exists(index=self.es_index):
# delete index in Es
self.client.indices.delete(index=self.es_index)

View File

@@ -91,6 +91,7 @@ beautifulsoup4 = "^4.12.2"
pypdf = "^3.11.0"
pytube = "^15.0.0"
llama-index = { version = "^0.7.21", optional = true }
elasticsearch = { version = "^8.9.0", optional = true }
@@ -107,6 +108,7 @@ isort = "^5.12.0"
[tool.poetry.extras]
streamlit = ["streamlit"]
community = ["llama-index"]
elasticsearch = ["elasticsearch"]
[tool.poetry.group.docs.dependencies]

View File

@@ -37,5 +37,9 @@ setuptools.setup(
"replicate==0.9.0",
"duckduckgo-search==3.8.4",
],
extras_require={"dev": ["black", "ruff", "isort", "pytest"], "community": ["llama-index==0.7.21"]},
extras_require={
"dev": ["black", "ruff", "isort", "pytest"],
"community": ["llama-index==0.7.21"],
"elasticsearch": ["elasticsearch>=8.9.0"],
},
)

View File

@@ -0,0 +1,33 @@
import unittest
from unittest.mock import Mock
from embedchain.config import ElasticsearchDBConfig
from embedchain.vectordb.elasticsearch_db import ElasticsearchDB
class TestEsDB(unittest.TestCase):
def setUp(self):
self.es_config = ElasticsearchDBConfig()
self.vector_dim = 384
def test_init_with_invalid_embedding_fn(self):
# Test if an exception is raised when an invalid embedding_fn is provided
with self.assertRaises(ValueError):
ElasticsearchDB(embedding_fn=None)
def test_init_with_invalid_es_config(self):
# Test if an exception is raised when an invalid es_config is provided
with self.assertRaises(ValueError):
ElasticsearchDB(embedding_fn=Mock(), es_config=None)
def test_init_with_invalid_vector_dim(self):
# Test if an exception is raised when an invalid vector_dim is provided
with self.assertRaises(ValueError):
ElasticsearchDB(embedding_fn=Mock(), es_config=self.es_config, vector_dim=None)
def test_init_with_invalid_collection_name(self):
# Test if an exception is raised when an invalid collection_name is provided
with self.assertRaises(ValueError):
ElasticsearchDB(
embedding_fn=Mock(), es_config=self.es_config, vector_dim=self.vector_dim, collection_name=None
)