feat: add support for Elastcisearch as vector data source (#402)
This commit is contained in:
committed by
GitHub
parent
f0abfea55d
commit
0179141b2e
34
docs/advanced/vector_database.mdx
Normal file
34
docs/advanced/vector_database.mdx
Normal file
@@ -0,0 +1,34 @@
|
||||
---
|
||||
title: '💾 Vector Database'
|
||||
---
|
||||
|
||||
We support `Chroma` and `Elasticsearch` as two vector database.
|
||||
`Chroma` is used as a default database.
|
||||
|
||||
### Elasticsearch
|
||||
In order to use `Elasticsearch` as vector database we need to use App type `CustomApp`.
|
||||
```python
|
||||
import os
|
||||
from embedchain import CustomApp
|
||||
from embedchain.config import CustomAppConfig, ElasticsearchDBConfig
|
||||
from embedchain.models import Providers, EmbeddingFunctions, VectorDatabases
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = 'OPENAI_API_KEY'
|
||||
|
||||
es_config = ElasticsearchDBConfig(
|
||||
# elasticsearch url or list of nodes url with different hosts and ports.
|
||||
es_url='http://localhost:9200',
|
||||
# pass named parameters supported by Python Elasticsearch client
|
||||
ca_certs="/path/to/http_ca.crt",
|
||||
basic_auth=("username", "password")
|
||||
)
|
||||
config = CustomAppConfig(
|
||||
embedding_fn=EmbeddingFunctions.OPENAI,
|
||||
provider=Providers.OPENAI,
|
||||
db_type=VectorDatabases.ELASTICSEARCH,
|
||||
es_config=es_config,
|
||||
)
|
||||
es_app = CustomApp(config)
|
||||
```
|
||||
- Set `db_type=VectorDatabases.ELASTICSEARCH` and `es_config=ElasticsearchDBConfig(es_url='')` in `CustomAppConfig`.
|
||||
- `ElasticsearchDBConfig` accepts `es_url` as elasticsearch url or as list of nodes url with different hosts and ports. Additionally we can pass named paramaters supported by Python Elasticsearch client.
|
||||
@@ -32,7 +32,7 @@
|
||||
},
|
||||
{
|
||||
"group": "Advanced",
|
||||
"pages": ["advanced/app_types", "advanced/interface_types", "advanced/adding_data","advanced/data_types", "advanced/query_configuration", "advanced/configuration", "advanced/testing", "advanced/showcase"]
|
||||
"pages": ["advanced/app_types", "advanced/interface_types", "advanced/adding_data","advanced/data_types", "advanced/query_configuration", "advanced/configuration", "advanced/testing", "advanced/vector_database", "advanced/showcase"]
|
||||
},
|
||||
{
|
||||
"group": "Examples",
|
||||
|
||||
@@ -5,3 +5,4 @@ from .apps.OpenSourceAppConfig import OpenSourceAppConfig # noqa: F401
|
||||
from .BaseConfig import BaseConfig # noqa: F401
|
||||
from .ChatConfig import ChatConfig # noqa: F401
|
||||
from .QueryConfig import QueryConfig # noqa: F401
|
||||
from .vectordbs.ElasticsearchDBConfig import ElasticsearchDBConfig # noqa: F401
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import logging
|
||||
|
||||
from embedchain.config.BaseConfig import BaseConfig
|
||||
from embedchain.config.vectordbs import ElasticsearchDBConfig
|
||||
from embedchain.models import VectorDatabases, VectorDimensions
|
||||
|
||||
|
||||
class BaseAppConfig(BaseConfig):
|
||||
@@ -8,7 +10,19 @@ class BaseAppConfig(BaseConfig):
|
||||
Parent config to initialize an instance of `App`, `OpenSourceApp` or `CustomApp`.
|
||||
"""
|
||||
|
||||
def __init__(self, log_level=None, embedding_fn=None, db=None, host=None, port=None, id=None, collection_name=None):
|
||||
def __init__(
|
||||
self,
|
||||
log_level=None,
|
||||
embedding_fn=None,
|
||||
db=None,
|
||||
host=None,
|
||||
port=None,
|
||||
id=None,
|
||||
collection_name=None,
|
||||
db_type: VectorDatabases = None,
|
||||
vector_dim: VectorDimensions = None,
|
||||
es_config: ElasticsearchDBConfig = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
|
||||
@@ -18,27 +32,53 @@ class BaseAppConfig(BaseConfig):
|
||||
:param port: Optional. Port for the database server.
|
||||
:param id: Optional. ID of the app. Document metadata will have this id.
|
||||
:param collection_name: Optional. Collection name for the database.
|
||||
:param db_type: Optional. type of Vector database to use
|
||||
:param vector_dim: Vector dimension generated by embedding fn
|
||||
:param es_config: Optional. elasticsearch database config to be used for connection
|
||||
"""
|
||||
self._setup_logging(log_level)
|
||||
|
||||
self.db = db if db else BaseAppConfig.default_db(embedding_fn=embedding_fn, host=host, port=port)
|
||||
self.collection_name = collection_name if collection_name else "embedchain_store"
|
||||
self.db = BaseAppConfig.get_db(
|
||||
db=db,
|
||||
embedding_fn=embedding_fn,
|
||||
host=host,
|
||||
port=port,
|
||||
db_type=db_type,
|
||||
vector_dim=vector_dim,
|
||||
collection_name=self.collection_name,
|
||||
es_config=es_config,
|
||||
)
|
||||
self.id = id
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
def default_db(embedding_fn, host, port):
|
||||
def get_db(db, embedding_fn, host, port, db_type, vector_dim, collection_name, es_config):
|
||||
"""
|
||||
Sets database to default (`ChromaDb`).
|
||||
|
||||
Get db based on db_type, db with default database (`ChromaDb`)
|
||||
:param Optional. (Vector) database to use for embeddings.
|
||||
:param embedding_fn: Embedding function to use in database.
|
||||
:param host: Optional. Hostname for the database server.
|
||||
:param port: Optional. Port for the database server.
|
||||
:returns: Default database
|
||||
:param db_type: Optional. db type to use. Supported values (`es`, `chroma`)
|
||||
:param vector_dim: Vector dimension generated by embedding fn
|
||||
:param collection_name: Optional. Collection name for the database.
|
||||
:param es_config: Optional. elasticsearch database config to be used for connection
|
||||
:raises ValueError: BaseAppConfig knows no default embedding function.
|
||||
:returns: database instance
|
||||
"""
|
||||
if db:
|
||||
return db
|
||||
|
||||
if embedding_fn is None:
|
||||
raise ValueError("ChromaDb cannot be instantiated without an embedding function")
|
||||
|
||||
if db_type == VectorDatabases.ELASTICSEARCH:
|
||||
from embedchain.vectordb.elasticsearch_db import ElasticsearchDB
|
||||
|
||||
return ElasticsearchDB(
|
||||
embedding_fn=embedding_fn, vector_dim=vector_dim, collection_name=collection_name, es_config=es_config
|
||||
)
|
||||
|
||||
from embedchain.vectordb.chroma_db import ChromaDB
|
||||
|
||||
return ChromaDB(embedding_fn=embedding_fn, host=host, port=port)
|
||||
|
||||
@@ -3,7 +3,8 @@ from typing import Any
|
||||
from chromadb.api.types import Documents, Embeddings
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from embedchain.models import EmbeddingFunctions, Providers
|
||||
from embedchain.config.vectordbs import ElasticsearchDBConfig
|
||||
from embedchain.models import EmbeddingFunctions, Providers, VectorDatabases, VectorDimensions
|
||||
|
||||
from .BaseAppConfig import BaseAppConfig
|
||||
|
||||
@@ -28,6 +29,8 @@ class CustomAppConfig(BaseAppConfig):
|
||||
provider: Providers = None,
|
||||
open_source_app_config=None,
|
||||
deployment_name=None,
|
||||
db_type: VectorDatabases = None,
|
||||
es_config: ElasticsearchDBConfig = None,
|
||||
):
|
||||
"""
|
||||
:param log_level: Optional. (String) Debug level
|
||||
@@ -41,6 +44,8 @@ class CustomAppConfig(BaseAppConfig):
|
||||
:param collection_name: Optional. Collection name for the database.
|
||||
:param provider: Optional. (Providers): LLM Provider to use.
|
||||
:param open_source_app_config: Optional. Config instance needed for open source apps.
|
||||
:param db_type: Optional. type of Vector database to use.
|
||||
:param es_config: Optional. elasticsearch database config to be used for connection
|
||||
"""
|
||||
if provider:
|
||||
self.provider = provider
|
||||
@@ -59,6 +64,9 @@ class CustomAppConfig(BaseAppConfig):
|
||||
port=port,
|
||||
id=id,
|
||||
collection_name=collection_name,
|
||||
db_type=db_type,
|
||||
vector_dim=CustomAppConfig.get_vector_dimension(embedding_function=embedding_fn),
|
||||
es_config=es_config,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
@@ -108,3 +116,20 @@ class CustomAppConfig(BaseAppConfig):
|
||||
from chromadb.utils import embedding_functions
|
||||
|
||||
return embedding_functions.SentenceTransformerEmbeddingFunction(model_name=model)
|
||||
|
||||
@staticmethod
|
||||
def get_vector_dimension(embedding_function: EmbeddingFunctions):
|
||||
if not isinstance(embedding_function, EmbeddingFunctions):
|
||||
raise ValueError(f"Invalid option: '{embedding_function}'.")
|
||||
|
||||
if embedding_function == EmbeddingFunctions.OPENAI:
|
||||
return VectorDimensions.OPENAI.value
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.HUGGING_FACE:
|
||||
return VectorDimensions.HUGGING_FACE.value
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.VERTEX_AI:
|
||||
return VectorDimensions.VERTEX_AI.value
|
||||
|
||||
elif embedding_function == EmbeddingFunctions.GPT4ALL:
|
||||
return VectorDimensions.GPT4ALL.value
|
||||
|
||||
15
embedchain/config/vectordbs/ElasticsearchDBConfig.py
Normal file
15
embedchain/config/vectordbs/ElasticsearchDBConfig.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from typing import Dict, List, Union
|
||||
|
||||
from embedchain.config.BaseConfig import BaseConfig
|
||||
|
||||
|
||||
class ElasticsearchDBConfig(BaseConfig):
|
||||
"""
|
||||
Config to initialize an elasticsearch client.
|
||||
:param es_url. elasticsearch url or list of nodes url to be used for connection
|
||||
:param ES_EXTRA_PARAMS: extra params dict that can be passed to elasticsearch.
|
||||
"""
|
||||
|
||||
def __init__(self, es_url: Union[str, List[str]] = None, **ES_EXTRA_PARAMS: Dict[str, any]):
|
||||
self.ES_URL = es_url
|
||||
self.ES_EXTRA_PARAMS = ES_EXTRA_PARAMS
|
||||
0
embedchain/config/vectordbs/__init__.py
Normal file
0
embedchain/config/vectordbs/__init__.py
Normal file
@@ -1,7 +1,6 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
from chromadb.errors import InvalidDimensionException
|
||||
from dotenv import load_dotenv
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.memory import ConversationBufferMemory
|
||||
@@ -31,8 +30,8 @@ class EmbedChain:
|
||||
"""
|
||||
|
||||
self.config = config
|
||||
self.db_client = self.config.db.client
|
||||
self.collection = self.config.db._get_or_create_collection(self.config.collection_name)
|
||||
self.db = self.config.db
|
||||
self.user_asks = []
|
||||
self.is_docs_site_instance = False
|
||||
self.online = False
|
||||
@@ -99,11 +98,10 @@ class EmbedChain:
|
||||
# get existing ids, and discard doc if any common id exist.
|
||||
where = {"app_id": self.config.id} if self.config.id is not None else {}
|
||||
# where={"url": src}
|
||||
existing_docs = self.collection.get(
|
||||
existing_ids = self.db.get(
|
||||
ids=ids,
|
||||
where=where, # optional filter
|
||||
)
|
||||
existing_ids = set(existing_docs["ids"])
|
||||
|
||||
if len(existing_ids):
|
||||
data_dict = {id: (doc, meta) for id, doc, meta in zip(ids, documents, metadatas)}
|
||||
@@ -128,7 +126,7 @@ class EmbedChain:
|
||||
# Add metadata to each document
|
||||
metadatas_with_metadata = [{**meta, **metadata} for meta in metadatas]
|
||||
|
||||
self.collection.add(documents=documents, metadatas=list(metadatas_with_metadata), ids=ids)
|
||||
self.db.add(documents=documents, metadatas=list(metadatas_with_metadata), ids=ids)
|
||||
print((f"Successfully saved {src}. New chunks count: " f"{self.count() - chunks_before_addition}"))
|
||||
|
||||
def _format_result(self, results):
|
||||
@@ -156,23 +154,13 @@ class EmbedChain:
|
||||
:param config: The query configuration.
|
||||
:return: The content of the document that matched your query.
|
||||
"""
|
||||
try:
|
||||
where = {"app_id": self.config.id} if self.config.id is not None else {} # optional filter
|
||||
result = self.collection.query(
|
||||
query_texts=[
|
||||
input_query,
|
||||
],
|
||||
n_results=config.number_documents,
|
||||
where=where,
|
||||
)
|
||||
except InvalidDimensionException as e:
|
||||
raise InvalidDimensionException(
|
||||
e.message()
|
||||
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
|
||||
) from None
|
||||
where = {"app_id": self.config.id} if self.config.id is not None else {} # optional filter
|
||||
contents = self.db.query(
|
||||
input_query=input_query,
|
||||
n_results=config.number_documents,
|
||||
where=where,
|
||||
)
|
||||
|
||||
results_formatted = self._format_result(result)
|
||||
contents = [result[0].page_content for result in results_formatted]
|
||||
return contents
|
||||
|
||||
def _append_search_and_context(self, context, web_search_result):
|
||||
@@ -339,11 +327,11 @@ class EmbedChain:
|
||||
|
||||
:return: The number of embeddings.
|
||||
"""
|
||||
return self.collection.count()
|
||||
return self.db.count()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Resets the database. Deletes all embeddings irreversibly.
|
||||
`App` has to be reinitialized after using this method.
|
||||
"""
|
||||
self.db_client.reset()
|
||||
self.db.reset()
|
||||
|
||||
6
embedchain/models/VectorDatabases.py
Normal file
6
embedchain/models/VectorDatabases.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class VectorDatabases(Enum):
|
||||
CHROMADB = "CHROMADB"
|
||||
ELASTICSEARCH = "ELASTICSEARCH"
|
||||
9
embedchain/models/VectorDimensions.py
Normal file
9
embedchain/models/VectorDimensions.py
Normal file
@@ -0,0 +1,9 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
# vector length created by embedding fn
|
||||
class VectorDimensions(Enum):
|
||||
GPT4ALL = 384
|
||||
OPENAI = 1536
|
||||
VERTEX_AI = 768
|
||||
HUGGING_FACE = 384
|
||||
@@ -1,2 +1,4 @@
|
||||
from .EmbeddingFunctions import EmbeddingFunctions # noqa: F401
|
||||
from .Providers import Providers # noqa: F401
|
||||
from .VectorDatabases import VectorDatabases # noqa: F401
|
||||
from .VectorDimensions import VectorDimensions # noqa: F401
|
||||
|
||||
@@ -10,3 +10,18 @@ class BaseVectorDB:
|
||||
|
||||
def _get_or_create_collection(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def get(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def add(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def query(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def count(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def reset(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from chromadb.errors import InvalidDimensionException
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
try:
|
||||
import chromadb
|
||||
@@ -7,6 +11,7 @@ except RuntimeError:
|
||||
|
||||
use_pysqlite3()
|
||||
import chromadb
|
||||
|
||||
from chromadb.config import Settings
|
||||
|
||||
from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
@@ -41,7 +46,73 @@ class ChromaDB(BaseVectorDB):
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Get or create the collection."""
|
||||
return self.client.get_or_create_collection(
|
||||
self.collection = self.client.get_or_create_collection(
|
||||
name=name,
|
||||
embedding_function=self.embedding_fn,
|
||||
)
|
||||
return self.collection
|
||||
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
:param where: Optional. to filter data
|
||||
"""
|
||||
existing_docs = self.collection.get(
|
||||
ids=ids,
|
||||
where=where, # optional filter
|
||||
)
|
||||
|
||||
return set(existing_docs["ids"])
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
"""
|
||||
add data in vector database
|
||||
:param documents: list of texts to add
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:param ids: ids of docs
|
||||
"""
|
||||
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
|
||||
|
||||
def _format_result(self, results):
|
||||
return [
|
||||
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
||||
for result in zip(
|
||||
results["documents"][0],
|
||||
results["metadatas"][0],
|
||||
results["distances"][0],
|
||||
)
|
||||
]
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
:param input_query: list of query string
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:param where: Optional. to filter data
|
||||
:return: The content of the document that matched your query.
|
||||
"""
|
||||
try:
|
||||
result = self.collection.query(
|
||||
query_texts=[
|
||||
input_query,
|
||||
],
|
||||
n_results=n_results,
|
||||
where=where,
|
||||
)
|
||||
except InvalidDimensionException as e:
|
||||
raise InvalidDimensionException(
|
||||
e.message()
|
||||
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
|
||||
) from None
|
||||
|
||||
results_formatted = self._format_result(result)
|
||||
contents = [result[0].page_content for result in results_formatted]
|
||||
return contents
|
||||
|
||||
def count(self) -> int:
|
||||
return self.collection.count()
|
||||
|
||||
def reset(self):
|
||||
# Delete all data from the database
|
||||
self.client.reset()
|
||||
|
||||
136
embedchain/vectordb/elasticsearch_db.py
Normal file
136
embedchain/vectordb/elasticsearch_db.py
Normal file
@@ -0,0 +1,136 @@
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
from elasticsearch.helpers import bulk
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Elasticsearch requires extra dependencies. Install with `pip install embedchain[elasticsearch]`"
|
||||
) from None
|
||||
|
||||
from embedchain.config import ElasticsearchDBConfig
|
||||
from embedchain.models.VectorDimensions import VectorDimensions
|
||||
from embedchain.vectordb.base_vector_db import BaseVectorDB
|
||||
|
||||
|
||||
class ElasticsearchDB(BaseVectorDB):
|
||||
def __init__(
|
||||
self,
|
||||
es_config: ElasticsearchDBConfig = None,
|
||||
embedding_fn: Callable[[list[str]], list[str]] = None,
|
||||
vector_dim: VectorDimensions = None,
|
||||
collection_name: str = None,
|
||||
):
|
||||
"""
|
||||
Elasticsearch as vector database
|
||||
:param es_config. elasticsearch database config to be used for connection
|
||||
:param embedding_fn: Function to generate embedding vectors.
|
||||
:param vector_dim: Vector dimension generated by embedding fn
|
||||
:param collection_name: Optional. Collection name for the database.
|
||||
"""
|
||||
if not hasattr(embedding_fn, "__call__"):
|
||||
raise ValueError("Embedding function is not a function")
|
||||
if es_config is None:
|
||||
raise ValueError("ElasticsearchDBConfig is required")
|
||||
if vector_dim is None:
|
||||
raise ValueError("Vector Dimension is required to refer correct index and mapping")
|
||||
if collection_name is None:
|
||||
raise ValueError("collection name is required. It cannot be empty")
|
||||
self.embedding_fn = embedding_fn
|
||||
self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
|
||||
self.vector_dim = vector_dim
|
||||
self.es_index = f"{collection_name}_{self.vector_dim}"
|
||||
index_settings = {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"text": {"type": "text"},
|
||||
"text_vector": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
|
||||
}
|
||||
}
|
||||
}
|
||||
if not self.client.indices.exists(index=self.es_index):
|
||||
# create index if not exist
|
||||
print("Creating index", self.es_index, index_settings)
|
||||
self.client.indices.create(index=self.es_index, body=index_settings)
|
||||
super().__init__()
|
||||
|
||||
def _get_or_create_db(self):
|
||||
return self.client
|
||||
|
||||
def _get_or_create_collection(self, name):
|
||||
"""Note: nothing to return here. Discuss later"""
|
||||
|
||||
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
Get existing doc ids present in vector database
|
||||
:param ids: list of doc ids to check for existance
|
||||
:param where: Optional. to filter data
|
||||
"""
|
||||
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
|
||||
if "app_id" in where:
|
||||
app_id = where["app_id"]
|
||||
query["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
|
||||
response = self.client.search(index=self.es_index, query=query, _source=False)
|
||||
docs = response["hits"]["hits"]
|
||||
ids = [doc["_id"] for doc in docs]
|
||||
return set(ids)
|
||||
|
||||
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
||||
"""
|
||||
add data in vector database
|
||||
:param documents: list of texts to add
|
||||
:param metadatas: list of metadata associated with docs
|
||||
:param ids: ids of docs
|
||||
"""
|
||||
docs = []
|
||||
embeddings = self.embedding_fn(documents)
|
||||
for id, text, metadata, text_vector in zip(ids, documents, metadatas, embeddings):
|
||||
docs.append(
|
||||
{
|
||||
"_index": self.es_index,
|
||||
"_id": id,
|
||||
"_source": {"text": text, "metadata": metadata, "text_vector": text_vector},
|
||||
}
|
||||
)
|
||||
bulk(self.client, docs)
|
||||
self.client.indices.refresh(index=self.es_index)
|
||||
return
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
:param input_query: list of query string
|
||||
:param n_results: no of similar documents to fetch from database
|
||||
:param where: Optional. to filter data
|
||||
"""
|
||||
input_query_vector = self.embedding_fn(input_query)
|
||||
query_vector = input_query_vector[0]
|
||||
query = {
|
||||
"script_score": {
|
||||
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.input_query_vector, 'text_vector') + 1.0",
|
||||
"params": {"input_query_vector": query_vector},
|
||||
},
|
||||
}
|
||||
}
|
||||
if "app_id" in where:
|
||||
app_id = where["app_id"]
|
||||
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
|
||||
_source = ["text"]
|
||||
response = self.client.search(index=self.es_index, query=query, _source=_source, size=n_results)
|
||||
docs = response["hits"]["hits"]
|
||||
contents = [doc["_source"]["text"] for doc in docs]
|
||||
return contents
|
||||
|
||||
def count(self) -> int:
|
||||
query = {"match_all": {}}
|
||||
response = self.client.count(index=self.es_index, query=query)
|
||||
doc_count = response["count"]
|
||||
return doc_count
|
||||
|
||||
def reset(self):
|
||||
# Delete all data from the database
|
||||
if self.client.indices.exists(index=self.es_index):
|
||||
# delete index in Es
|
||||
self.client.indices.delete(index=self.es_index)
|
||||
@@ -91,6 +91,7 @@ beautifulsoup4 = "^4.12.2"
|
||||
pypdf = "^3.11.0"
|
||||
pytube = "^15.0.0"
|
||||
llama-index = { version = "^0.7.21", optional = true }
|
||||
elasticsearch = { version = "^8.9.0", optional = true }
|
||||
|
||||
|
||||
|
||||
@@ -107,6 +108,7 @@ isort = "^5.12.0"
|
||||
[tool.poetry.extras]
|
||||
streamlit = ["streamlit"]
|
||||
community = ["llama-index"]
|
||||
elasticsearch = ["elasticsearch"]
|
||||
|
||||
[tool.poetry.group.docs.dependencies]
|
||||
|
||||
|
||||
6
setup.py
6
setup.py
@@ -37,5 +37,9 @@ setuptools.setup(
|
||||
"replicate==0.9.0",
|
||||
"duckduckgo-search==3.8.4",
|
||||
],
|
||||
extras_require={"dev": ["black", "ruff", "isort", "pytest"], "community": ["llama-index==0.7.21"]},
|
||||
extras_require={
|
||||
"dev": ["black", "ruff", "isort", "pytest"],
|
||||
"community": ["llama-index==0.7.21"],
|
||||
"elasticsearch": ["elasticsearch>=8.9.0"],
|
||||
},
|
||||
)
|
||||
|
||||
33
tests/vectordb/test_elasticsearch_db.py
Normal file
33
tests/vectordb/test_elasticsearch_db.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import unittest
|
||||
from unittest.mock import Mock
|
||||
|
||||
from embedchain.config import ElasticsearchDBConfig
|
||||
from embedchain.vectordb.elasticsearch_db import ElasticsearchDB
|
||||
|
||||
|
||||
class TestEsDB(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.es_config = ElasticsearchDBConfig()
|
||||
self.vector_dim = 384
|
||||
|
||||
def test_init_with_invalid_embedding_fn(self):
|
||||
# Test if an exception is raised when an invalid embedding_fn is provided
|
||||
with self.assertRaises(ValueError):
|
||||
ElasticsearchDB(embedding_fn=None)
|
||||
|
||||
def test_init_with_invalid_es_config(self):
|
||||
# Test if an exception is raised when an invalid es_config is provided
|
||||
with self.assertRaises(ValueError):
|
||||
ElasticsearchDB(embedding_fn=Mock(), es_config=None)
|
||||
|
||||
def test_init_with_invalid_vector_dim(self):
|
||||
# Test if an exception is raised when an invalid vector_dim is provided
|
||||
with self.assertRaises(ValueError):
|
||||
ElasticsearchDB(embedding_fn=Mock(), es_config=self.es_config, vector_dim=None)
|
||||
|
||||
def test_init_with_invalid_collection_name(self):
|
||||
# Test if an exception is raised when an invalid collection_name is provided
|
||||
with self.assertRaises(ValueError):
|
||||
ElasticsearchDB(
|
||||
embedding_fn=Mock(), es_config=self.es_config, vector_dim=self.vector_dim, collection_name=None
|
||||
)
|
||||
Reference in New Issue
Block a user