Files
t6_mem0/embedchain/vectordb/elasticsearch_db.py

137 lines
5.7 KiB
Python

from typing import Any, Callable, Dict, List
try:
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
"Elasticsearch requires extra dependencies. Install with `pip install embedchain[elasticsearch]`"
) from None
from embedchain.config import ElasticsearchDBConfig
from embedchain.models.VectorDimensions import VectorDimensions
from embedchain.vectordb.base_vector_db import BaseVectorDB
class ElasticsearchDB(BaseVectorDB):
def __init__(
self,
es_config: ElasticsearchDBConfig = None,
embedding_fn: Callable[[list[str]], list[str]] = None,
vector_dim: VectorDimensions = None,
collection_name: str = None,
):
"""
Elasticsearch as vector database
:param es_config. elasticsearch database config to be used for connection
:param embedding_fn: Function to generate embedding vectors.
:param vector_dim: Vector dimension generated by embedding fn
:param collection_name: Optional. Collection name for the database.
"""
if not hasattr(embedding_fn, "__call__"):
raise ValueError("Embedding function is not a function")
if es_config is None:
raise ValueError("ElasticsearchDBConfig is required")
if vector_dim is None:
raise ValueError("Vector Dimension is required to refer correct index and mapping")
if collection_name is None:
raise ValueError("collection name is required. It cannot be empty")
self.embedding_fn = embedding_fn
self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
self.vector_dim = vector_dim
self.es_index = f"{collection_name}_{self.vector_dim}"
index_settings = {
"mappings": {
"properties": {
"text": {"type": "text"},
"text_vector": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
}
}
}
if not self.client.indices.exists(index=self.es_index):
# create index if not exist
print("Creating index", self.es_index, index_settings)
self.client.indices.create(index=self.es_index, body=index_settings)
super().__init__()
def _get_or_create_db(self):
return self.client
def _get_or_create_collection(self, name):
"""Note: nothing to return here. Discuss later"""
def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
"""
Get existing doc ids present in vector database
:param ids: list of doc ids to check for existance
:param where: Optional. to filter data
"""
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
if "app_id" in where:
app_id = where["app_id"]
query["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
response = self.client.search(index=self.es_index, query=query, _source=False)
docs = response["hits"]["hits"]
ids = [doc["_id"] for doc in docs]
return set(ids)
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
"""
add data in vector database
:param documents: list of texts to add
:param metadatas: list of metadata associated with docs
:param ids: ids of docs
"""
docs = []
embeddings = self.embedding_fn(documents)
for id, text, metadata, text_vector in zip(ids, documents, metadatas, embeddings):
docs.append(
{
"_index": self.es_index,
"_id": id,
"_source": {"text": text, "metadata": metadata, "text_vector": text_vector},
}
)
bulk(self.client, docs)
self.client.indices.refresh(index=self.es_index)
return
def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
"""
query contents from vector data base based on vector similarity
:param input_query: list of query string
:param n_results: no of similar documents to fetch from database
:param where: Optional. to filter data
"""
input_query_vector = self.embedding_fn(input_query)
query_vector = input_query_vector[0]
query = {
"script_score": {
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
"script": {
"source": "cosineSimilarity(params.input_query_vector, 'text_vector') + 1.0",
"params": {"input_query_vector": query_vector},
},
}
}
if "app_id" in where:
app_id = where["app_id"]
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
_source = ["text"]
response = self.client.search(index=self.es_index, query=query, _source=_source, size=n_results)
docs = response["hits"]["hits"]
contents = [doc["_source"]["text"] for doc in docs]
return contents
def count(self) -> int:
query = {"match_all": {}}
response = self.client.count(index=self.es_index, query=query)
doc_count = response["count"]
return doc_count
def reset(self):
# Delete all data from the database
if self.client.indices.exists(index=self.es_index):
# delete index in Es
self.client.indices.delete(index=self.es_index)