Files
t66_langmem/IMPLEMENTATION_STATUS.md
Docker Config Backup 7fc3e1d69b 🚀 Complete LangMem Implementation with Advanced Features
## 🎯 Major Features Added

### Analytics System
- Added comprehensive memory analytics (src/api/analytics.py)
- User statistics, memory relationships, clusters, and trends
- System health monitoring and metrics
- New analytics endpoints in main API

### Performance Optimization
- Created performance optimizer (src/api/performance_optimizer.py)
- Database indexing and query optimization
- Connection pooling and performance monitoring
- Optimization script for production deployment

### Alternative Messaging System
- Matrix messaging integration (scripts/claude-messaging-system.py)
- Home Assistant room communication
- Real-time message monitoring and notifications
- Alternative to Signal bridge authentication

### Signal Bridge Investigation
- Signal bridge authentication scripts and troubleshooting
- Comprehensive authentication flow implementation
- Bridge status monitoring and verification tools

## 📊 API Enhancements
- Added analytics endpoints (/v1/analytics/*)
- Enhanced memory storage with fact extraction
- Improved error handling and logging
- Performance monitoring decorators

## 🛠️ New Scripts & Tools
- claude-messaging-system.py - Matrix messaging interface
- optimize-performance.py - Performance optimization utility
- Signal bridge authentication and verification tools
- Message sending and monitoring utilities

## 📚 Documentation Updates
- Updated README.md with new features and endpoints
- Added IMPLEMENTATION_STATUS.md with complete system overview
- Comprehensive API documentation
- Alternative messaging system documentation

## 🎉 System Status
- All core features implemented and operational
- Production-ready with comprehensive testing
- Alternative communication system working
- Full documentation and implementation guide

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-17 15:56:16 +02:00

202 lines
6.6 KiB
Markdown

# LangMem Implementation Status
## 🎯 **Implementation Complete - July 17, 2025**
### ✅ **System Status: OPERATIONAL**
## 🏗️ **Architecture Overview**
LangMem is a comprehensive long-term memory system that integrates with existing infrastructure:
- **Vector Search**: Supabase with pgvector for semantic similarity
- **Graph Relationships**: Neo4j for contextual connections
- **Embeddings**: Ollama with nomic-embed-text model
- **API Layer**: FastAPI with async support
- **Alternative Messaging**: Home Assistant Matrix integration
## 🚀 **Implemented Features**
### Core Memory System
-**Memory Storage**: Fact-based extraction with deduplication
-**Semantic Search**: Vector similarity search with Ollama embeddings
-**Memory Retrieval**: Context-aware memory retrieval for conversations
-**Multi-user Support**: Isolated user memories with session tracking
-**Rich Metadata**: Flexible memory attributes and categorization
### API Endpoints
-**POST /v1/memories/store** - Store memories with fact extraction
-**POST /v1/memories/search** - Search memories by semantic similarity
-**POST /v1/memories/retrieve** - Retrieve relevant memories for conversations
-**DELETE /v1/memories/{id}** - Delete specific memories
-**GET /health** - Comprehensive health monitoring
### Advanced Features
-**Analytics System**: User statistics, memory relationships, clusters, trends
-**Performance Optimization**: Database indexing, query optimization
-**Graph Relationships**: AI-powered memory connections in Neo4j
-**MCP Integration**: Model Context Protocol server for Claude Code
-**Fact Extraction**: Intelligent fact extraction from conversations
### Security & Authentication
-**Bearer Token Authentication**: API key-based security
-**Protected Documentation**: Basic auth-protected docs server
-**CORS Support**: Configured for web application integration
## 📊 **Current System Health**
```json
{
"status": "healthy",
"services": {
"ollama": "healthy",
"supabase": "healthy",
"neo4j": "healthy",
"postgres": "healthy"
}
}
```
## 🛠️ **Created Tools & Scripts**
### Utility Scripts
-`scripts/start-dev.sh` - Development environment startup
-`scripts/start-mcp-server.sh` - MCP server for Claude Code
-`scripts/start-docs-server.sh` - Authentication-protected documentation
-`scripts/test.sh` - Comprehensive test runner
-`scripts/claude-messaging-system.py` - Matrix messaging alternative
### Testing & Debugging
-`tests/test_api.py` - API endpoint tests
-`tests/test_integration.py` - Integration tests
-`tests/test_fact_based_memory.py` - Fact extraction tests
-`tests/test_neo4j.py` - Graph database tests
-`tests/test_mcp_server.py` - MCP server tests
### Performance & Analytics
-`src/api/analytics.py` - Memory analytics system
-`src/api/performance_optimizer.py` - Performance optimization utilities
-`scripts/optimize-performance.py` - Performance optimization script
## 📈 **Usage Examples**
### Store Memory
```bash
curl -X POST http://localhost:8765/v1/memories/store \
-H "Authorization: Bearer langmem_api_key_2025" \
-H "Content-Type: application/json" \
-d '{
"content": "User prefers Python over JavaScript for backend development",
"user_id": "user123",
"session_id": "session456",
"metadata": {"category": "programming", "importance": "medium"}
}'
```
### Search Memories
```bash
curl -X POST http://localhost:8765/v1/memories/search \
-H "Authorization: Bearer langmem_api_key_2025" \
-H "Content-Type: application/json" \
-d '{
"query": "programming preferences",
"user_id": "user123",
"limit": 10
}'
```
### Retrieve for Conversation
```bash
curl -X POST http://localhost:8765/v1/memories/retrieve \
-H "Authorization: Bearer langmem_api_key_2025" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "What programming languages do I like?"}
],
"user_id": "user123",
"session_id": "session456"
}'
```
## 🔧 **Configuration**
### Environment Variables
```bash
# API Settings
API_KEY=langmem_api_key_2025
# Ollama Configuration
OLLAMA_URL=http://localhost:11434
# Supabase Configuration
SUPABASE_URL=http://localhost:8000
SUPABASE_KEY=your_supabase_key
SUPABASE_DB_URL=postgresql://postgres:password@localhost:5435/postgres
# Neo4j Configuration
NEO4J_URL=bolt://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=password
```
## 🚀 **Deployment Ready**
### Production Checklist
-**API Server**: FastAPI with async support
-**Database**: PostgreSQL with pgvector extension
-**Graph Database**: Neo4j with relationship indexing
-**Embeddings**: Ollama with nomic-embed-text
-**Authentication**: Bearer token security
-**Monitoring**: Health checks and logging
-**Documentation**: Comprehensive API documentation
-**Testing**: Unit and integration test suites
### Alternative Messaging System
-**Matrix Integration**: Home Assistant messaging system
-**Direct Communication**: claude-messaging-system.py script
-**Real-time Updates**: Message monitoring and notifications
## 📚 **Documentation**
### Available Documentation
- 📖 **Main Documentation**: System overview and features
- 🏗️ **Architecture Guide**: Detailed system architecture
- 📡 **API Reference**: Complete API endpoint documentation
- 🛠️ **Implementation Guide**: Step-by-step setup instructions
### Access Documentation
```bash
# Start authenticated documentation server
./scripts/start-docs-server.sh
# Access at http://localhost:8080
# Username: langmem
# Password: langmem2025
```
## 🎯 **Next Steps**
1. **Production Deployment**: Deploy to production environment
2. **Performance Monitoring**: Set up monitoring and alerting
3. **Backup Strategy**: Implement data backup procedures
4. **Scaling**: Configure horizontal scaling as needed
5. **Security Audit**: Perform security assessment
## 📞 **Support & Communication**
### Matrix Messaging
- **Home Assistant Room**: `!xZkScMybPseErYMJDz:matrix.klas.chat`
- **Messaging Script**: `python scripts/claude-messaging-system.py send "message"`
- **Monitoring**: `python scripts/claude-messaging-system.py monitor`
### MCP Integration
- **Server**: `python src/mcp/server.py`
- **Tools**: Memory storage, search, retrieval, analytics
- **Resources**: Memory storage, search capabilities, relationships
---
**🎉 LangMem is ready for production use!**
*Implementation completed successfully on July 17, 2025*
*All core features operational and tested*