# LangMem Implementation Status ## 🎯 **Implementation Complete - July 17, 2025** ### ✅ **System Status: OPERATIONAL** ## 🏗️ **Architecture Overview** LangMem is a comprehensive long-term memory system that integrates with existing infrastructure: - **Vector Search**: Supabase with pgvector for semantic similarity - **Graph Relationships**: Neo4j for contextual connections - **Embeddings**: Ollama with nomic-embed-text model - **API Layer**: FastAPI with async support - **Alternative Messaging**: Home Assistant Matrix integration ## 🚀 **Implemented Features** ### Core Memory System - ✅ **Memory Storage**: Fact-based extraction with deduplication - ✅ **Semantic Search**: Vector similarity search with Ollama embeddings - ✅ **Memory Retrieval**: Context-aware memory retrieval for conversations - ✅ **Multi-user Support**: Isolated user memories with session tracking - ✅ **Rich Metadata**: Flexible memory attributes and categorization ### API Endpoints - ✅ **POST /v1/memories/store** - Store memories with fact extraction - ✅ **POST /v1/memories/search** - Search memories by semantic similarity - ✅ **POST /v1/memories/retrieve** - Retrieve relevant memories for conversations - ✅ **DELETE /v1/memories/{id}** - Delete specific memories - ✅ **GET /health** - Comprehensive health monitoring ### Advanced Features - ✅ **Analytics System**: User statistics, memory relationships, clusters, trends - ✅ **Performance Optimization**: Database indexing, query optimization - ✅ **Graph Relationships**: AI-powered memory connections in Neo4j - ✅ **MCP Integration**: Model Context Protocol server for Claude Code - ✅ **Fact Extraction**: Intelligent fact extraction from conversations ### Security & Authentication - ✅ **Bearer Token Authentication**: API key-based security - ✅ **Protected Documentation**: Basic auth-protected docs server - ✅ **CORS Support**: Configured for web application integration ## 📊 **Current System Health** ```json { "status": "healthy", "services": { "ollama": "healthy", "supabase": "healthy", "neo4j": "healthy", "postgres": "healthy" } } ``` ## 🛠️ **Created Tools & Scripts** ### Utility Scripts - ✅ `scripts/start-dev.sh` - Development environment startup - ✅ `scripts/start-mcp-server.sh` - MCP server for Claude Code - ✅ `scripts/start-docs-server.sh` - Authentication-protected documentation - ✅ `scripts/test.sh` - Comprehensive test runner - ✅ `scripts/claude-messaging-system.py` - Matrix messaging alternative ### Testing & Debugging - ✅ `tests/test_api.py` - API endpoint tests - ✅ `tests/test_integration.py` - Integration tests - ✅ `tests/test_fact_based_memory.py` - Fact extraction tests - ✅ `tests/test_neo4j.py` - Graph database tests - ✅ `tests/test_mcp_server.py` - MCP server tests ### Performance & Analytics - ✅ `src/api/analytics.py` - Memory analytics system - ✅ `src/api/performance_optimizer.py` - Performance optimization utilities - ✅ `scripts/optimize-performance.py` - Performance optimization script ## 📈 **Usage Examples** ### Store Memory ```bash curl -X POST http://localhost:8765/v1/memories/store \ -H "Authorization: Bearer langmem_api_key_2025" \ -H "Content-Type: application/json" \ -d '{ "content": "User prefers Python over JavaScript for backend development", "user_id": "user123", "session_id": "session456", "metadata": {"category": "programming", "importance": "medium"} }' ``` ### Search Memories ```bash curl -X POST http://localhost:8765/v1/memories/search \ -H "Authorization: Bearer langmem_api_key_2025" \ -H "Content-Type: application/json" \ -d '{ "query": "programming preferences", "user_id": "user123", "limit": 10 }' ``` ### Retrieve for Conversation ```bash curl -X POST http://localhost:8765/v1/memories/retrieve \ -H "Authorization: Bearer langmem_api_key_2025" \ -H "Content-Type: application/json" \ -d '{ "messages": [ {"role": "user", "content": "What programming languages do I like?"} ], "user_id": "user123", "session_id": "session456" }' ``` ## 🔧 **Configuration** ### Environment Variables ```bash # API Settings API_KEY=langmem_api_key_2025 # Ollama Configuration OLLAMA_URL=http://localhost:11434 # Supabase Configuration SUPABASE_URL=http://localhost:8000 SUPABASE_KEY=your_supabase_key SUPABASE_DB_URL=postgresql://postgres:password@localhost:5435/postgres # Neo4j Configuration NEO4J_URL=bolt://localhost:7687 NEO4J_USER=neo4j NEO4J_PASSWORD=password ``` ## 🚀 **Deployment Ready** ### Production Checklist - ✅ **API Server**: FastAPI with async support - ✅ **Database**: PostgreSQL with pgvector extension - ✅ **Graph Database**: Neo4j with relationship indexing - ✅ **Embeddings**: Ollama with nomic-embed-text - ✅ **Authentication**: Bearer token security - ✅ **Monitoring**: Health checks and logging - ✅ **Documentation**: Comprehensive API documentation - ✅ **Testing**: Unit and integration test suites ### Alternative Messaging System - ✅ **Matrix Integration**: Home Assistant messaging system - ✅ **Direct Communication**: claude-messaging-system.py script - ✅ **Real-time Updates**: Message monitoring and notifications ## 📚 **Documentation** ### Available Documentation - 📖 **Main Documentation**: System overview and features - 🏗️ **Architecture Guide**: Detailed system architecture - 📡 **API Reference**: Complete API endpoint documentation - 🛠️ **Implementation Guide**: Step-by-step setup instructions ### Access Documentation ```bash # Start authenticated documentation server ./scripts/start-docs-server.sh # Access at http://localhost:8080 # Username: langmem # Password: langmem2025 ``` ## 🎯 **Next Steps** 1. **Production Deployment**: Deploy to production environment 2. **Performance Monitoring**: Set up monitoring and alerting 3. **Backup Strategy**: Implement data backup procedures 4. **Scaling**: Configure horizontal scaling as needed 5. **Security Audit**: Perform security assessment ## 📞 **Support & Communication** ### Matrix Messaging - **Home Assistant Room**: `!xZkScMybPseErYMJDz:matrix.klas.chat` - **Messaging Script**: `python scripts/claude-messaging-system.py send "message"` - **Monitoring**: `python scripts/claude-messaging-system.py monitor` ### MCP Integration - **Server**: `python src/mcp/server.py` - **Tools**: Memory storage, search, retrieval, analytics - **Resources**: Memory storage, search capabilities, relationships --- **🎉 LangMem is ready for production use!** *Implementation completed successfully on July 17, 2025* *All core features operational and tested*