Major Changes: - Implemented MCP HTTP/SSE transport server for n8n and web clients - Created mcp_server/http_server.py with FastAPI for JSON-RPC 2.0 over HTTP - Added health check endpoint (/health) for container monitoring - Refactored mcp-server/ to mcp_server/ (Python module structure) - Updated Dockerfile.mcp to run HTTP server with health checks MCP Server Features: - 7 memory tools exposed via MCP (add, search, get, update, delete) - HTTP/SSE transport on port 8765 for n8n integration - stdio transport for Claude Code integration - JSON-RPC 2.0 protocol implementation - CORS support for web clients n8n Integration: - Successfully tested with AI Agent workflows - MCP Client Tool configuration documented - Working webhook endpoint tested and verified - System prompt optimized for automatic user_id usage Documentation: - Created comprehensive Mintlify documentation site - Added docs/mcp/introduction.mdx - MCP server overview - Added docs/mcp/installation.mdx - Installation guide - Added docs/mcp/tools.mdx - Complete tool reference - Added docs/examples/n8n.mdx - n8n integration guide - Added docs/examples/claude-code.mdx - Claude Code setup - Updated README.md with MCP HTTP server info - Updated roadmap to mark Phase 1 as complete Bug Fixes: - Fixed synchronized delete operations across Supabase and Neo4j - Updated memory_service.py with proper error handling - Fixed Neo4j connection issues in delete operations Configuration: - Added MCP_HOST and MCP_PORT environment variables - Updated .env.example with MCP server configuration - Updated docker-compose.yml with MCP container health checks Testing: - Added test scripts for MCP HTTP endpoint verification - Created test workflows in n8n - Verified all 7 memory tools working correctly - Tested synchronized operations across both stores Version: 1.0.0 Status: Phase 1 Complete - Production Ready 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
7.8 KiB
7.8 KiB
T6 Mem0 v2 - Memory System for LLM Applications
Comprehensive memory system based on mem0.ai featuring MCP server integration, REST API, hybrid storage architecture, and AI-powered memory management.
Features
- MCP Server: HTTP/SSE and stdio transports for universal AI integration
- ✅ n8n AI Agent workflows
- ✅ Claude Code integration
- ✅ 7 memory tools (add, search, get, update, delete)
- REST API: Full HTTP API for memory operations (CRUD)
- Hybrid Storage: Supabase (pgvector) + Neo4j (graph relationships)
- Synchronized Operations: Automatic sync across vector and graph stores
- AI-Powered: OpenAI embeddings and LLM processing
- Multi-Agent Support: User and agent-specific memory isolation
- Graph Visualization: Neo4j Browser for relationship exploration
- Docker-Native: Fully containerized with Docker Compose
Architecture
Clients (n8n, Claude Code, Custom Apps)
↓
┌─────────────────┬───────────────────┐
│ MCP Server │ REST API │
│ Port 8765 │ Port 8080 │
│ HTTP/SSE+stdio │ FastAPI │
└─────────────────┴───────────────────┘
↓
Mem0 Core Library (v0.1.118)
↓
┌─────────────────┬───────────────────┬───────────────────┐
│ Supabase │ Neo4j │ OpenAI │
│ Vector Store │ Graph Store │ Embeddings+LLM │
│ pgvector │ Cypher Queries │ text-embedding-3 │
└─────────────────┴───────────────────┴───────────────────┘
Quick Start
Prerequisites
- Docker and Docker Compose
- Existing Supabase instance (PostgreSQL with pgvector)
- OpenAI API key
- Python 3.11+ (for development)
Installation
# Clone repository
git clone https://git.colsys.tech/klas/t6_mem0_v2
cd t6_mem0_v2
# Configure environment
cp .env.example .env
# Edit .env with your credentials
# Start services
docker compose up -d
# Verify health
curl http://localhost:8080/v1/health
curl http://localhost:8765/health
Configuration
Create .env file:
# OpenAI
OPENAI_API_KEY=sk-...
# Supabase
SUPABASE_CONNECTION_STRING=postgresql://user:pass@172.21.0.12:5432/postgres
# Neo4j
NEO4J_URI=neo4j://neo4j:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=your-password
# REST API
API_KEY=your-secure-api-key
# MCP Server
MCP_HOST=0.0.0.0
MCP_PORT=8765
# Mem0 Configuration
MEM0_COLLECTION_NAME=t6_memories
MEM0_EMBEDDING_DIMS=1536
MEM0_VERSION=v1.1
Usage
REST API
# Add memory
curl -X POST http://localhost:8080/v1/memories/ \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{"messages":[{"role":"user","content":"I love pizza"}],"user_id":"alice"}'
# Search memories
curl -X GET "http://localhost:8080/v1/memories/search?query=food&user_id=alice" \
-H "Authorization: Bearer YOUR_API_KEY"
MCP Server
HTTP/SSE Transport (for n8n, web clients):
# MCP endpoint
http://localhost:8765/mcp
# Test tools/list
curl -X POST http://localhost:8765/mcp \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"tools/list","params":{}}'
stdio Transport (for Claude Code, local tools):
Add to ~/.config/claude/mcp.json:
{
"mcpServers": {
"t6-mem0": {
"command": "python",
"args": ["-m", "mcp_server.main"],
"cwd": "/path/to/t6_mem0_v2",
"env": {
"OPENAI_API_KEY": "${OPENAI_API_KEY}",
"SUPABASE_CONNECTION_STRING": "${SUPABASE_CONNECTION_STRING}",
"NEO4J_URI": "neo4j://localhost:7687",
"NEO4J_USER": "neo4j",
"NEO4J_PASSWORD": "${NEO4J_PASSWORD}"
}
}
}
}
n8n Integration:
Use the MCP Client Tool node in n8n AI Agent workflows:
{
"endpointUrl": "http://172.21.0.14:8765/mcp", // Use Docker network IP
"serverTransport": "httpStreamable",
"authentication": "none",
"include": "all"
}
See n8n integration guide for complete workflow examples.
Documentation
Full documentation available at: docs/ (Mintlify)
- MCP Server Introduction
- MCP Installation Guide
- MCP Tool Reference
- n8n Integration Guide
- Claude Code Integration
- Architecture
- Project Requirements
Project Structure
t6_mem0_v2/
├── api/ # REST API (FastAPI)
│ ├── main.py # API entry point
│ ├── memory_service.py # Memory operations
│ └── routes.py # API endpoints
├── mcp_server/ # MCP server implementation
│ ├── main.py # stdio transport (Claude Code)
│ ├── http_server.py # HTTP/SSE transport (n8n, web)
│ ├── tools.py # MCP tool definitions
│ └── server.py # Core MCP server logic
├── docker/ # Docker configurations
│ ├── Dockerfile.api # REST API container
│ └── Dockerfile.mcp # MCP server container
├── docs/ # Mintlify documentation
│ ├── mcp/ # MCP server docs
│ └── examples/ # Integration examples
├── tests/ # Test suites
├── config.py # Configuration management
├── requirements.txt # Python dependencies
└── docker-compose.yml # Service orchestration
Technology Stack
- Core: mem0ai library
- Vector DB: Supabase with pgvector
- Graph DB: Neo4j 5.x
- LLM: OpenAI API (Phase 1), Ollama (Phase 2)
- REST API: FastAPI
- MCP: Python MCP SDK
- Container: Docker & Docker Compose
Roadmap
Phase 1: Foundation ✅ COMPLETED
- ✅ Architecture design
- ✅ REST API implementation (FastAPI with Bearer auth)
- ✅ MCP server implementation (HTTP/SSE + stdio transports)
- ✅ Supabase integration (pgvector for embeddings)
- ✅ Neo4j integration (graph relationships)
- ✅ Documentation site (Mintlify)
- ✅ n8n AI Agent integration
- ✅ Claude Code integration
- ✅ Docker deployment with health checks
Phase 2: Local LLM (Next)
- ⏳ Local Ollama integration
- ⏳ Model switching capabilities (OpenAI ↔ Ollama)
- ⏳ Performance optimization
- ⏳ Embedding model selection
Phase 3: Advanced Features
- ⏳ Memory versioning and history
- ⏳ Advanced graph queries and analytics
- ⏳ Multi-modal memory support (images, audio)
- ⏳ Analytics dashboard
- ⏳ Memory export/import
- ⏳ Custom embedding models
Development
# Install dependencies
pip install -r requirements.txt
# Run tests
pytest tests/
# Format code
black .
ruff check .
# Run locally (development)
python -m api.main
Contributing
This is a private project. For issues or suggestions, contact the maintainer.
License
Proprietary - All rights reserved
Support
- Repository: https://git.colsys.tech/klas/t6_mem0_v2
- Documentation: See
docs/directory - Issues: Contact maintainer
Status: Phase 1 Complete - Production Ready Version: 1.0.0 Last Updated: 2025-10-15
Recent Updates
- 2025-10-15: MCP HTTP/SSE server implementation complete
- 2025-10-15: n8n AI Agent integration tested and documented
- 2025-10-15: Complete Mintlify documentation site
- 2025-10-15: Synchronized delete operations across stores
- 2025-10-13: Initial project setup and architecture