Complete implementation: REST API, MCP server, and documentation
Implementation Summary:
- REST API with FastAPI (complete CRUD operations)
- MCP Server with Python MCP SDK (7 tools)
- Supabase migrations (pgvector setup)
- Docker Compose orchestration
- Mintlify documentation site
- Environment configuration
- Shared config module
REST API Features:
- POST /v1/memories/ - Add memory
- GET /v1/memories/search - Semantic search
- GET /v1/memories/{id} - Get memory
- GET /v1/memories/user/{user_id} - User memories
- PATCH /v1/memories/{id} - Update memory
- DELETE /v1/memories/{id} - Delete memory
- GET /v1/health - Health check
- GET /v1/stats - Statistics
- Bearer token authentication
- OpenAPI documentation
MCP Server Tools:
- add_memory - Add from messages
- search_memories - Semantic search
- get_memory - Retrieve by ID
- get_all_memories - List all
- update_memory - Update content
- delete_memory - Delete by ID
- delete_all_memories - Bulk delete
Infrastructure:
- Neo4j 5.26 with APOC/GDS
- Supabase pgvector integration
- Docker network: localai
- Health checks and monitoring
- Structured logging
Documentation:
- Introduction page
- Quickstart guide
- Architecture deep dive
- Mintlify configuration
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
153
migrations/supabase/README.md
Normal file
153
migrations/supabase/README.md
Normal file
@@ -0,0 +1,153 @@
|
||||
# Supabase Migrations for T6 Mem0 v2
|
||||
|
||||
## Overview
|
||||
|
||||
This directory contains SQL migrations for setting up the Supabase vector store used by T6 Mem0 v2.
|
||||
|
||||
## Migrations
|
||||
|
||||
### 001_init_vector_store.sql
|
||||
|
||||
Initial setup migration that creates:
|
||||
|
||||
- **pgvector extension**: Enables vector similarity search
|
||||
- **t6_memories table**: Main storage for memory vectors and metadata
|
||||
- **Indexes**: HNSW for vectors, B-tree for filters, GIN for JSONB
|
||||
- **Functions**:
|
||||
- `match_t6_memories()`: Vector similarity search with filters
|
||||
- `get_t6_memory_stats()`: Memory statistics
|
||||
- `update_t6_memories_updated_at()`: Auto-update timestamp
|
||||
- **View**: `t6_recent_memories` for quick access to recent entries
|
||||
|
||||
## Applying Migrations
|
||||
|
||||
### Method 1: Supabase SQL Editor (Recommended)
|
||||
|
||||
1. Open your Supabase project dashboard
|
||||
2. Navigate to SQL Editor
|
||||
3. Create a new query
|
||||
4. Copy and paste the contents of `001_init_vector_store.sql`
|
||||
5. Click "Run" to execute
|
||||
|
||||
### Method 2: psql Command Line
|
||||
|
||||
```bash
|
||||
# Connect to your Supabase database
|
||||
psql "postgresql://supabase_admin:PASSWORD@172.21.0.12:5432/postgres"
|
||||
|
||||
# Run the migration
|
||||
\i migrations/supabase/001_init_vector_store.sql
|
||||
```
|
||||
|
||||
### Method 3: Programmatic Application
|
||||
|
||||
```python
|
||||
import psycopg2
|
||||
|
||||
# Connect to Supabase
|
||||
conn = psycopg2.connect(
|
||||
"postgresql://supabase_admin:PASSWORD@172.21.0.12:5432/postgres"
|
||||
)
|
||||
|
||||
# Read and execute migration
|
||||
with open('migrations/supabase/001_init_vector_store.sql', 'r') as f:
|
||||
migration_sql = f.read()
|
||||
|
||||
with conn.cursor() as cur:
|
||||
cur.execute(migration_sql)
|
||||
conn.commit()
|
||||
|
||||
conn.close()
|
||||
```
|
||||
|
||||
## Verification
|
||||
|
||||
After applying the migration, verify the setup:
|
||||
|
||||
```sql
|
||||
-- Check if pgvector extension is enabled
|
||||
SELECT * FROM pg_extension WHERE extname = 'vector';
|
||||
|
||||
-- Check if table exists
|
||||
\d t6_memories
|
||||
|
||||
-- Verify indexes
|
||||
\di t6_memories*
|
||||
|
||||
-- Test the similarity search function
|
||||
SELECT * FROM match_t6_memories(
|
||||
'[0.1, 0.2, ...]'::vector(1536), -- Sample embedding
|
||||
10, -- Match count
|
||||
'test_user', -- User ID filter
|
||||
NULL, -- Agent ID filter
|
||||
NULL -- Run ID filter
|
||||
);
|
||||
|
||||
-- Get memory statistics
|
||||
SELECT * FROM get_t6_memory_stats();
|
||||
```
|
||||
|
||||
## Rollback
|
||||
|
||||
If you need to rollback the migration:
|
||||
|
||||
```sql
|
||||
-- Drop view
|
||||
DROP VIEW IF EXISTS t6_recent_memories;
|
||||
|
||||
-- Drop functions
|
||||
DROP FUNCTION IF EXISTS get_t6_memory_stats();
|
||||
DROP FUNCTION IF EXISTS match_t6_memories(vector, INT, TEXT, TEXT, TEXT);
|
||||
DROP FUNCTION IF EXISTS update_t6_memories_updated_at();
|
||||
|
||||
-- Drop trigger
|
||||
DROP TRIGGER IF EXISTS t6_memories_updated_at_trigger ON t6_memories;
|
||||
|
||||
-- Drop table (WARNING: This will delete all data!)
|
||||
DROP TABLE IF EXISTS t6_memories CASCADE;
|
||||
|
||||
-- Optionally remove extension (only if not used elsewhere)
|
||||
-- DROP EXTENSION IF EXISTS vector CASCADE;
|
||||
```
|
||||
|
||||
## Schema
|
||||
|
||||
### t6_memories Table
|
||||
|
||||
| Column | Type | Description |
|
||||
|--------|------|-------------|
|
||||
| id | UUID | Primary key |
|
||||
| embedding | vector(1536) | OpenAI embedding vector |
|
||||
| metadata | JSONB | Flexible metadata |
|
||||
| user_id | TEXT | User identifier |
|
||||
| agent_id | TEXT | Agent identifier |
|
||||
| run_id | TEXT | Run identifier |
|
||||
| memory_text | TEXT | Original memory text |
|
||||
| created_at | TIMESTAMPTZ | Creation timestamp |
|
||||
| updated_at | TIMESTAMPTZ | Last update timestamp |
|
||||
| hash | TEXT | Deduplication hash (unique) |
|
||||
|
||||
### Indexes
|
||||
|
||||
- **t6_memories_embedding_idx**: HNSW index for fast vector search
|
||||
- **t6_memories_user_id_idx**: B-tree for user filtering
|
||||
- **t6_memories_agent_id_idx**: B-tree for agent filtering
|
||||
- **t6_memories_run_id_idx**: B-tree for run filtering
|
||||
- **t6_memories_created_at_idx**: B-tree for time-based queries
|
||||
- **t6_memories_metadata_idx**: GIN for JSON queries
|
||||
- **t6_memories_text_search_idx**: GIN for full-text search
|
||||
|
||||
## Notes
|
||||
|
||||
- The HNSW index provides O(log n) approximate nearest neighbor search
|
||||
- Cosine distance is used for similarity (1 - cosine similarity)
|
||||
- All timestamps are stored in UTC
|
||||
- The hash column ensures deduplication of identical memories
|
||||
- Metadata is stored as JSONB for flexible schema evolution
|
||||
|
||||
## Support
|
||||
|
||||
For issues or questions about migrations, refer to:
|
||||
- [Supabase Vector Documentation](https://supabase.com/docs/guides/database/extensions/pgvector)
|
||||
- [pgvector Documentation](https://github.com/pgvector/pgvector)
|
||||
- Project Architecture: `../../ARCHITECTURE.md`
|
||||
Reference in New Issue
Block a user