Files
t6_mem0/mem0/embeddings/huggingface.py
2024-07-12 20:21:33 +05:30

20 lines
537 B
Python

from embedding.base import EmbeddingBase
from sentence_transformers import SentenceTransformer
class HuggingFaceEmbedding(EmbeddingBase):
def __init__(self, model_name="multi-qa-MiniLM-L6-cos-v1"):
self.model = SentenceTransformer(model_name)
def get_embedding(self, text):
"""
Get the embedding for the given text using Hugging Face.
Args:
text (str): The text to embed.
Returns:
list: The embedding vector.
"""
return self.model.encode(text)