from embedding.base import EmbeddingBase from sentence_transformers import SentenceTransformer class HuggingFaceEmbedding(EmbeddingBase): def __init__(self, model_name="multi-qa-MiniLM-L6-cos-v1"): self.model = SentenceTransformer(model_name) def get_embedding(self, text): """ Get the embedding for the given text using Hugging Face. Args: text (str): The text to embed. Returns: list: The embedding vector. """ return self.model.encode(text)