Files
t6_mem0/PHASE1_COMPLETE.md
Docker Config Backup 41cd78207a Integrate self-hosted Supabase with mem0 system
- Configure mem0 to use self-hosted Supabase instead of Qdrant for vector storage
- Update docker-compose to connect containers to localai network
- Install vecs library for Supabase pgvector integration
- Create comprehensive test suite for Supabase + mem0 integration
- Update documentation to reflect Supabase configuration
- All containers now connected to shared localai network
- Successful vector storage and retrieval tests completed

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-31 06:57:10 +02:00

109 lines
3.6 KiB
Markdown

# Phase 1 Complete: Foundation Setup ✅
## Summary
Successfully completed Phase 1 of the mem0 memory system implementation! All core infrastructure components are now running and tested.
## ✅ Completed Tasks
### 1. Project Structure & Environment
- ✅ Cloned mem0 repository
- ✅ Set up Python virtual environment
- ✅ Installed mem0 core package (v0.1.115)
- ✅ Created configuration management system
### 2. Database Infrastructure
-**Neo4j Graph Database**: Running on localhost:7474/7687
- Version: 5.23.0
- Password: `mem0_neo4j_password_2025`
- Ready for graph memory relationships
-**Qdrant Vector Database**: Running on localhost:6333/6334
- Version: v1.15.0
- Ready for vector memory storage
- 0 collections (clean start)
-**Supabase**: Running on localhost:8000
- Container healthy but auth needs refinement
- Available for future PostgreSQL/pgvector integration
### 3. LLM Infrastructure
-**Ollama Local LLM**: Running on localhost:11434
- 21 models available including:
- `qwen2.5:7b` (recommended)
- `llama3.2:3b` (lightweight)
- `nomic-embed-text:latest` (embeddings)
- Ready for local AI processing
### 4. Configuration System
- ✅ Environment management (`.env` file)
- ✅ Configuration loading system (`config.py`)
- ✅ Multi-provider support (OpenAI/Ollama)
- ✅ Database connection management
### 5. Testing Framework
- ✅ Basic functionality tests
- ✅ Database connection tests
- ✅ Service health monitoring
- ✅ Integration validation
## 🎯 Current Status: 4/5 Systems Operational
| Component | Status | Port | Notes |
|-----------|--------|------|-------|
| Neo4j | ✅ READY | 7474/7687 | Graph memory storage |
| Qdrant | ✅ READY | 6333/6334 | Vector memory storage |
| Ollama | ✅ READY | 11434 | Local LLM processing |
| Mem0 Core | ✅ READY | - | Memory management system |
| Supabase | ⚠️ AUTH ISSUE | 8000 | Container healthy, auth pending |
## 📁 Project Structure
```
/home/klas/mem0/
├── venv/ # Python virtual environment
├── config.py # Configuration management
├── test_basic.py # Basic functionality tests
├── test_openai.py # OpenAI integration test
├── test_all_connections.py # Comprehensive connection tests
├── docker-compose.yml # Neo4j & Qdrant containers
├── .env # Environment variables
├── .env.example # Environment template
└── PHASE1_COMPLETE.md # This status report
```
## 🔧 Ready for Phase 2: Core Memory System
With the foundation in place, you can now:
1. **Add OpenAI API key** to `.env` file for initial testing
2. **Test OpenAI integration**: `python test_openai.py`
3. **Begin Phase 2**: Core memory system implementation
4. **Start local-first development** with Ollama + Qdrant + Neo4j
## 📋 Next Steps (Phase 2)
1. **Configure Ollama Integration**
- Test mem0 with local models
- Optimize embedding models
- Performance benchmarking
2. **Implement Core Memory Operations**
- Add memories with Qdrant vector storage
- Search and retrieval functionality
- Memory management (CRUD operations)
3. **Add Graph Memory (Neo4j)**
- Entity relationship mapping
- Contextual memory connections
- Knowledge graph building
4. **API Development**
- REST API endpoints
- Authentication layer
- Performance optimization
5. **MCP Server Implementation**
- HTTP transport protocol
- Claude Code integration
- Standardized memory operations
## 🚀 The foundation is solid - ready to build the memory system!