Files
t6_mem0/mem0/embeddings/gemini.py
Akshat Jain 386d8b87ae Fix: Migrate Gemini Embeddings (#3002)
Co-authored-by: Dev-Khant <devkhant24@gmail.com>
2025-06-23 13:16:10 +05:30

40 lines
1.4 KiB
Python

import os
from typing import Literal, Optional
import google.genai as genai
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class GoogleGenAIEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "models/text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or self.config.output_dimensionality or 768
api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY")
if api_key:
self.client = genai.Client(api_key="api_key")
else:
self.client = genai.Client()
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Google Generative AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. (Currently not used by Gemini for task_type)
Returns:
list: The embedding vector.
"""
text = text.replace("\n", " ")
response = self.client.models.embed_content(
model=self.config.model, content=text, output_dimensionality=self.config.embedding_dims
)
return response["embedding"]