import os from typing import Literal, Optional import google.genai as genai from mem0.configs.embeddings.base import BaseEmbedderConfig from mem0.embeddings.base import EmbeddingBase class GoogleGenAIEmbedding(EmbeddingBase): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) self.config.model = self.config.model or "models/text-embedding-004" self.config.embedding_dims = self.config.embedding_dims or self.config.output_dimensionality or 768 api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY") if api_key: self.client = genai.Client(api_key="api_key") else: self.client = genai.Client() def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None): """ Get the embedding for the given text using Google Generative AI. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. (Currently not used by Gemini for task_type) Returns: list: The embedding vector. """ text = text.replace("\n", " ") response = self.client.models.embed_content( model=self.config.model, content=text, output_dimensionality=self.config.embedding_dims ) return response["embedding"]