Rename embedchain to mem0 and open sourcing code for long term memory (#1474)
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
This commit is contained in:
0
mem0/embeddings/__init__.py
Normal file
0
mem0/embeddings/__init__.py
Normal file
16
mem0/embeddings/base.py
Normal file
16
mem0/embeddings/base.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class EmbeddingBase(ABC):
|
||||
@abstractmethod
|
||||
def embed(self, text):
|
||||
"""
|
||||
Get the embedding for the given text.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
pass
|
||||
19
mem0/embeddings/huggingface.py
Normal file
19
mem0/embeddings/huggingface.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from embedding.base import EmbeddingBase
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
|
||||
class HuggingFaceEmbedding(EmbeddingBase):
|
||||
def __init__(self, model_name="multi-qa-MiniLM-L6-cos-v1"):
|
||||
self.model = SentenceTransformer(model_name)
|
||||
|
||||
def get_embedding(self, text):
|
||||
"""
|
||||
Get the embedding for the given text using Hugging Face.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
return self.model.encode(text)
|
||||
30
mem0/embeddings/ollama.py
Normal file
30
mem0/embeddings/ollama.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import ollama
|
||||
from embedding.base import EmbeddingBase
|
||||
|
||||
|
||||
class OllamaEmbedding(EmbeddingBase):
|
||||
def __init__(self, model="nomic-embed-text"):
|
||||
self.model = model
|
||||
self._ensure_model_exists()
|
||||
self.dims = 512
|
||||
|
||||
def _ensure_model_exists(self):
|
||||
"""
|
||||
Ensure the specified model exists locally. If not, pull it from Ollama.
|
||||
"""
|
||||
model_list = [m["name"] for m in ollama.list()["models"]]
|
||||
if not any(m.startswith(self.model) for m in model_list):
|
||||
ollama.pull(self.model)
|
||||
|
||||
def embed(self, text):
|
||||
"""
|
||||
Get the embedding for the given text using Ollama.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
response = ollama.embeddings(model=self.model, prompt=text)
|
||||
return response["embedding"]
|
||||
27
mem0/embeddings/openai.py
Normal file
27
mem0/embeddings/openai.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from openai import OpenAI
|
||||
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
|
||||
|
||||
class OpenAIEmbedding(EmbeddingBase):
|
||||
def __init__(self, model="text-embedding-3-small"):
|
||||
self.client = OpenAI()
|
||||
self.model = model
|
||||
self.dims = 1536
|
||||
|
||||
def embed(self, text):
|
||||
"""
|
||||
Get the embedding for the given text using OpenAI.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
text = text.replace("\n", " ")
|
||||
return (
|
||||
self.client.embeddings.create(input=[text], model=self.model)
|
||||
.data[0]
|
||||
.embedding
|
||||
)
|
||||
Reference in New Issue
Block a user