Fix all lint errors (#2627)

This commit is contained in:
Dev Khant
2025-05-06 01:16:02 +05:30
committed by GitHub
parent 725a1aa114
commit ec1d7a45d3
50 changed files with 586 additions and 570 deletions

View File

@@ -59,6 +59,10 @@ jobs:
- name: Install dependencies
run: make install_all
if: steps.cached-poetry-dependencies.outputs.cache-hit != 'true'
- name: Run Formatting
run: |
mkdir -p mem0/.ruff_cache && chmod -R 777 mem0/.ruff_cache
cd mem0 && poetry run ruff check . --select F
- name: Run tests and generate coverage report
run: make test
@@ -90,6 +94,10 @@ jobs:
- name: Install dependencies
run: cd embedchain && make install_all
if: steps.cached-poetry-dependencies.outputs.cache-hit != 'true'
- name: Run Formatting
run: |
mkdir -p embedchain/.ruff_cache && chmod -R 777 embedchain/.ruff_cache
cd embedchain && poetry run ruff check . --select F
- name: Lint with ruff
run: cd embedchain && make lint
- name: Run tests and generate coverage report

View File

@@ -12,7 +12,7 @@ install:
install_all:
poetry install
poetry run pip install groq together boto3 litellm ollama chromadb weaviate weaviate-client sentence_transformers vertexai \
poetry run pip install ruff==0.6.9 groq together boto3 litellm ollama chromadb weaviate weaviate-client sentence_transformers vertexai \
google-generativeai elasticsearch opensearch-py vecs pinecone pinecone-text faiss-cpu langchain-community \
upstash-vector azure-search-documents langchain-memgraph

View File

@@ -7,10 +7,12 @@
# forked from autogen.agentchat.contrib.capabilities.teachability.Teachability
from typing import Dict, Optional, Union
from autogen.agentchat.assistant_agent import ConversableAgent
from autogen.agentchat.contrib.capabilities.agent_capability import AgentCapability
from autogen.agentchat.contrib.text_analyzer_agent import TextAnalyzerAgent
from termcolor import colored
from mem0 import Memory

View File

@@ -1,42 +1,116 @@
{
"cells": [
{
"metadata": {},
"cell_type": "code",
"execution_count": null,
"id": "1e8a980a2e0b9a85",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade pip\n",
"%pip install mem0ai pyautogen flaml"
],
"id": "1e8a980a2e0b9a85",
"outputs": [],
"execution_count": null
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d437544fe259dd1b",
"metadata": {
"ExecuteTime": {
"end_time": "2024-09-25T20:29:52.443024Z",
"start_time": "2024-09-25T20:29:52.440046Z"
}
},
"cell_type": "code",
"outputs": [],
"source": [
"# Set up ENV Vars\n",
"import os\n",
"os.environ['OPENAI_API_KEY'] = \"sk-xxx\"\n"
],
"id": "d437544fe259dd1b",
"outputs": [],
"execution_count": 11
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2024-09-25T20:30:03.914245Z",
"start_time": "2024-09-25T20:29:53.236601Z"
}
},
"collapsed": true
},
"cell_type": "code",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:autogen.agentchat.contrib.gpt_assistant_agent:OpenAI client config of GPTAssistantAgent(assistant) - model: gpt-4o\n",
"WARNING:autogen.agentchat.contrib.gpt_assistant_agent:Matching assistant found, using the first matching assistant: {'id': 'asst_PpOJ2mJC8QeysR54I6DEdi4E', 'created_at': 1726444855, 'description': None, 'instructions': 'You are a helpful AI assistant.\\nSolve tasks using your coding and language skills.\\nIn the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block) for the user to execute.\\n 1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the operating system. After sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself.\\n 2. When you need to perform some task with code, use the code to perform the task and output the result. Finish the task smartly.\\nSolve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which step uses code, and which step uses your language skill.\\nWhen using code, you must indicate the script type in the code block. The user cannot provide any other feedback or perform any other action beyond executing the code you suggest. The user can\\'t modify your code. So do not suggest incomplete code which requires users to modify. Don\\'t use a code block if it\\'s not intended to be executed by the user.\\nIf you want the user to save the code in a file before executing it, put # filename: <filename> inside the code block as the first line. Don\\'t include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use \\'print\\' function for the output when relevant. Check the execution result returned by the user.\\nIf the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can\\'t be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.\\nWhen you find an answer, verify the answer carefully. Include verifiable evidence in your response if possible.\\nReply \"TERMINATE\" in the end when everything is done.\\n ', 'metadata': {}, 'model': 'gpt-4o', 'name': 'assistant', 'object': 'assistant', 'tools': [], 'response_format': 'auto', 'temperature': 1.0, 'tool_resources': ToolResources(code_interpreter=None, file_search=None), 'top_p': 1.0}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33muser_proxy\u001b[0m (to assistant):\n",
"\n",
"Write a Python function that reverses a string.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant\u001b[0m (to user_proxy):\n",
"\n",
"Sure! Here is the Python code for a function that takes a string as input and returns the reversed string.\n",
"\n",
"```python\n",
"def reverse_string(s):\n",
" return s[::-1]\n",
"\n",
"# Example usage\n",
"if __name__ == \"__main__\":\n",
" example_string = \"Hello, world!\"\n",
" reversed_string = reverse_string(example_string)\n",
" print(f\"Original string: {example_string}\")\n",
" print(f\"Reversed string: {reversed_string}\")\n",
"```\n",
"\n",
"When you run this code, it will print the original string and the reversed string. You can replace `example_string` with any string you want to reverse.\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to assistant):\n",
"\n",
"exitcode: 0 (execution succeeded)\n",
"Code output: \n",
"Original string: Hello, world!\n",
"Reversed string: !dlrow ,olleH\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant\u001b[0m (to user_proxy):\n",
"\n",
"Great, the function worked as expected! The original string \"Hello, world!\" was correctly reversed to \"!dlrow ,olleH\".\n",
"\n",
"If you have any other tasks or need further assistance, let me know! \n",
"\n",
"TERMINATE\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n"
]
},
{
"data": {
"text/plain": [
"ChatResult(chat_id=None, chat_history=[{'content': 'Write a Python function that reverses a string.', 'role': 'assistant', 'name': 'user_proxy'}, {'content': 'Sure! Here is the Python code for a function that takes a string as input and returns the reversed string.\\n\\n```python\\ndef reverse_string(s):\\n return s[::-1]\\n\\n# Example usage\\nif __name__ == \"__main__\":\\n example_string = \"Hello, world!\"\\n reversed_string = reverse_string(example_string)\\n print(f\"Original string: {example_string}\")\\n print(f\"Reversed string: {reversed_string}\")\\n```\\n\\nWhen you run this code, it will print the original string and the reversed string. You can replace `example_string` with any string you want to reverse.\\n', 'role': 'user', 'name': 'assistant'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\nOriginal string: Hello, world!\\nReversed string: !dlrow ,olleH\\n', 'role': 'assistant', 'name': 'user_proxy'}, {'content': 'Great, the function worked as expected! The original string \"Hello, world!\" was correctly reversed to \"!dlrow ,olleH\".\\n\\nIf you have any other tasks or need further assistance, let me know! \\n\\nTERMINATE\\n', 'role': 'user', 'name': 'assistant'}], summary='Great, the function worked as expected! The original string \"Hello, world!\" was correctly reversed to \"!dlrow ,olleH\".\\n\\nIf you have any other tasks or need further assistance, let me know! \\n\\n\\n', cost={'usage_including_cached_inference': {'total_cost': 0}, 'usage_excluding_cached_inference': {'total_cost': 0}}, human_input=[])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# AutoGen GPTAssistantAgent Capabilities:\n",
"# - Generates code based on user requirements and preferences.\n",
@@ -93,90 +167,40 @@
"user_query = \"Write a Python function that reverses a string.\"\n",
"# Initiate Chat w/o Memory\n",
"user_proxy.initiate_chat(gpt_assistant, message=user_query)"
],
"id": "initial_id",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:autogen.agentchat.contrib.gpt_assistant_agent:OpenAI client config of GPTAssistantAgent(assistant) - model: gpt-4o\n",
"WARNING:autogen.agentchat.contrib.gpt_assistant_agent:Matching assistant found, using the first matching assistant: {'id': 'asst_PpOJ2mJC8QeysR54I6DEdi4E', 'created_at': 1726444855, 'description': None, 'instructions': 'You are a helpful AI assistant.\\nSolve tasks using your coding and language skills.\\nIn the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block) for the user to execute.\\n 1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the operating system. After sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself.\\n 2. When you need to perform some task with code, use the code to perform the task and output the result. Finish the task smartly.\\nSolve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which step uses code, and which step uses your language skill.\\nWhen using code, you must indicate the script type in the code block. The user cannot provide any other feedback or perform any other action beyond executing the code you suggest. The user can\\'t modify your code. So do not suggest incomplete code which requires users to modify. Don\\'t use a code block if it\\'s not intended to be executed by the user.\\nIf you want the user to save the code in a file before executing it, put # filename: <filename> inside the code block as the first line. Don\\'t include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use \\'print\\' function for the output when relevant. Check the execution result returned by the user.\\nIf the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can\\'t be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.\\nWhen you find an answer, verify the answer carefully. Include verifiable evidence in your response if possible.\\nReply \"TERMINATE\" in the end when everything is done.\\n ', 'metadata': {}, 'model': 'gpt-4o', 'name': 'assistant', 'object': 'assistant', 'tools': [], 'response_format': 'auto', 'temperature': 1.0, 'tool_resources': ToolResources(code_interpreter=None, file_search=None), 'top_p': 1.0}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\n",
"Write a Python function that reverses a string.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\n",
"Sure! Here is the Python code for a function that takes a string as input and returns the reversed string.\n",
"\n",
"```python\n",
"def reverse_string(s):\n",
" return s[::-1]\n",
"\n",
"# Example usage\n",
"if __name__ == \"__main__\":\n",
" example_string = \"Hello, world!\"\n",
" reversed_string = reverse_string(example_string)\n",
" print(f\"Original string: {example_string}\")\n",
" print(f\"Reversed string: {reversed_string}\")\n",
"```\n",
"\n",
"When you run this code, it will print the original string and the reversed string. You can replace `example_string` with any string you want to reverse.\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\n",
"exitcode: 0 (execution succeeded)\n",
"Code output: \n",
"Original string: Hello, world!\n",
"Reversed string: !dlrow ,olleH\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\n",
"Great, the function worked as expected! The original string \"Hello, world!\" was correctly reversed to \"!dlrow ,olleH\".\n",
"\n",
"If you have any other tasks or need further assistance, let me know! \n",
"\n",
"TERMINATE\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n"
]
},
{
"data": {
"text/plain": [
"ChatResult(chat_id=None, chat_history=[{'content': 'Write a Python function that reverses a string.', 'role': 'assistant', 'name': 'user_proxy'}, {'content': 'Sure! Here is the Python code for a function that takes a string as input and returns the reversed string.\\n\\n```python\\ndef reverse_string(s):\\n return s[::-1]\\n\\n# Example usage\\nif __name__ == \"__main__\":\\n example_string = \"Hello, world!\"\\n reversed_string = reverse_string(example_string)\\n print(f\"Original string: {example_string}\")\\n print(f\"Reversed string: {reversed_string}\")\\n```\\n\\nWhen you run this code, it will print the original string and the reversed string. You can replace `example_string` with any string you want to reverse.\\n', 'role': 'user', 'name': 'assistant'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\nOriginal string: Hello, world!\\nReversed string: !dlrow ,olleH\\n', 'role': 'assistant', 'name': 'user_proxy'}, {'content': 'Great, the function worked as expected! The original string \"Hello, world!\" was correctly reversed to \"!dlrow ,olleH\".\\n\\nIf you have any other tasks or need further assistance, let me know! \\n\\nTERMINATE\\n', 'role': 'user', 'name': 'assistant'}], summary='Great, the function worked as expected! The original string \"Hello, world!\" was correctly reversed to \"!dlrow ,olleH\".\\n\\nIf you have any other tasks or need further assistance, let me know! \\n\\n\\n', cost={'usage_including_cached_inference': {'total_cost': 0}, 'usage_excluding_cached_inference': {'total_cost': 0}}, human_input=[])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 12
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c2fe6fd02324be37",
"metadata": {
"ExecuteTime": {
"end_time": "2024-09-25T20:31:40.536369Z",
"start_time": "2024-09-25T20:31:31.078911Z"
}
},
"cell_type": "code",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/z6/3w4ng1lj3mn4vmhplgc4y0580000gn/T/ipykernel_77647/3850691550.py:28: DeprecationWarning: The current add API output format is deprecated. To use the latest format, set `api_version='v1.1'`. The current format will be removed in mem0ai 1.1.0 and later versions.\n",
" MEM0_MEMORY_CLIENT.add(MEMORY_DATA, user_id=USER_ID)\n",
"/var/folders/z6/3w4ng1lj3mn4vmhplgc4y0580000gn/T/ipykernel_77647/3850691550.py:29: DeprecationWarning: The current add API output format is deprecated. To use the latest format, set `api_version='v1.1'`. The current format will be removed in mem0ai 1.1.0 and later versions.\n",
" MEM0_MEMORY_CLIENT.add(MEMORY_DATA, agent_id=AGENT_ID)\n"
]
},
{
"data": {
"text/plain": [
"{'message': 'ok'}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Benefits of Preference Memory in AutoGen Agents:\n",
"# - Personalization: Tailors responses to individual user or team preferences.\n",
@@ -207,61 +231,28 @@
"# Add preference data to memory\n",
"MEM0_MEMORY_CLIENT.add(MEMORY_DATA, user_id=USER_ID)\n",
"MEM0_MEMORY_CLIENT.add(MEMORY_DATA, agent_id=AGENT_ID)"
],
"id": "c2fe6fd02324be37",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/z6/3w4ng1lj3mn4vmhplgc4y0580000gn/T/ipykernel_77647/3850691550.py:28: DeprecationWarning: The current add API output format is deprecated. To use the latest format, set `api_version='v1.1'`. The current format will be removed in mem0ai 1.1.0 and later versions.\n",
" MEM0_MEMORY_CLIENT.add(MEMORY_DATA, user_id=USER_ID)\n",
"/var/folders/z6/3w4ng1lj3mn4vmhplgc4y0580000gn/T/ipykernel_77647/3850691550.py:29: DeprecationWarning: The current add API output format is deprecated. To use the latest format, set `api_version='v1.1'`. The current format will be removed in mem0ai 1.1.0 and later versions.\n",
" MEM0_MEMORY_CLIENT.add(MEMORY_DATA, agent_id=AGENT_ID)\n"
]
},
{
"data": {
"text/plain": [
"{'message': 'ok'}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 16
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "fb6d6a8f36aedfd6",
"metadata": {},
"source": [
"## Option 1: \n",
"Using Direct Prompt Injection:\n",
"`user memory example`"
],
"id": "fb6d6a8f36aedfd6"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "29be484c69093371",
"metadata": {
"ExecuteTime": {
"end_time": "2024-09-25T20:31:52.411604Z",
"start_time": "2024-09-25T20:31:40.611497Z"
}
},
"cell_type": "code",
"source": [
"# Retrieve the memory\n",
"relevant_memories = MEM0_MEMORY_CLIENT.search(user_query, user_id=USER_ID, limit=3)\n",
"relevant_memories_text = '\\n'.join(mem['memory'] for mem in relevant_memories)\n",
"print(f\"Relevant memories:\")\n",
"print(relevant_memories_text)\n",
"\n",
"prompt = f\"{user_query}\\n Coding Preferences: \\n{relevant_memories_text}\"\n",
"browse_result = user_proxy.initiate_chat(gpt_assistant, message=prompt)"
],
"id": "29be484c69093371",
"outputs": [
{
"name": "stderr",
@@ -280,7 +271,7 @@
"Prefers functions to have a descriptive docstring\n",
"Prefers camelCase for variable names\n",
"Prefers code to be explicitly written with clear variable names\n",
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\u001b[33muser_proxy\u001b[0m (to assistant):\n",
"\n",
"Write a Python function that reverses a string.\n",
" Coding Preferences: \n",
@@ -289,7 +280,7 @@
"Prefers code to be explicitly written with clear variable names\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\u001b[33massistant\u001b[0m (to user_proxy):\n",
"\n",
"Sure, I will write a Python function that reverses a given string with clear and descriptive variable names, along with a descriptive docstring.\n",
"\n",
@@ -324,9 +315,9 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\u001b[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to assistant):\n",
"\n",
"exitcode: 0 (execution succeeded)\n",
"Code output: \n",
@@ -335,7 +326,7 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\u001b[33massistant\u001b[0m (to user_proxy):\n",
"\n",
"Great! It looks like the code executed successfully and produced the correct output, reversing the string \"Hello World!\" to \"!dlroW olleH\".\n",
"\n",
@@ -354,26 +345,38 @@
]
}
],
"execution_count": 17
"source": [
"# Retrieve the memory\n",
"relevant_memories = MEM0_MEMORY_CLIENT.search(user_query, user_id=USER_ID, limit=3)\n",
"relevant_memories_text = '\\n'.join(mem['memory'] for mem in relevant_memories)\n",
"print(\"Relevant memories:\")\n",
"print(relevant_memories_text)\n",
"\n",
"prompt = f\"{user_query}\\n Coding Preferences: \\n{relevant_memories_text}\"\n",
"browse_result = user_proxy.initiate_chat(gpt_assistant, message=prompt)"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "fc0ae72d0ef7f6de",
"metadata": {},
"source": [
"## Option 2:\n",
"Using UserProxyAgent: \n",
"`agent memory example`"
],
"id": "fc0ae72d0ef7f6de"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "bfd9342cf2096ca5",
"metadata": {
"ExecuteTime": {
"end_time": "2024-09-25T20:31:52.421965Z",
"start_time": "2024-09-25T20:31:52.418762Z"
}
},
"cell_type": "code",
"outputs": [],
"source": [
"# UserProxyAgent in AutoGen:\n",
"# - Acts as intermediary between humans and AI agents in the AutoGen framework.\n",
@@ -405,39 +408,24 @@
" self.memory.add(MEMORY_DATA, agent_id=self.agent_id)\n",
" return response\n",
" "
],
"id": "bfd9342cf2096ca5",
"outputs": [],
"execution_count": 18
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "6d2a757d1cf65881",
"metadata": {
"ExecuteTime": {
"end_time": "2024-09-25T20:32:20.269222Z",
"start_time": "2024-09-25T20:32:07.485051Z"
}
},
"cell_type": "code",
"source": [
"mem0_user_proxy = Mem0ProxyCoderAgent(\n",
" name=AGENT_ID,\n",
" code_execution_config={\n",
" \"work_dir\": \"coding\",\n",
" \"use_docker\": False,\n",
" }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n",
" is_termination_msg=lambda msg: \"TERMINATE\" in msg[\"content\"],\n",
" human_input_mode=\"NEVER\",\n",
" max_consecutive_auto_reply=1,\n",
")\n",
"code_result = mem0_user_proxy.initiate_chat(gpt_assistant, message=user_query)"
],
"id": "6d2a757d1cf65881",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001B[33mchicory.ai\u001B[0m (to assistant):\n",
"\u001b[33mchicory.ai\u001b[0m (to assistant):\n",
"\n",
"Write a Python function that reverses a string.\n",
" Coding Preferences: \n",
@@ -460,7 +448,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"\u001B[33massistant\u001B[0m (to chicory.ai):\n",
"\u001b[33massistant\u001b[0m (to chicory.ai):\n",
"\n",
"Sure, I'll write a Python function that reverses a string following your coding preferences.\n",
"\n",
@@ -487,9 +475,9 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001B[0m\n",
"\u001B[33mchicory.ai\u001B[0m (to assistant):\n",
"\u001b[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
"\u001b[33mchicory.ai\u001b[0m (to assistant):\n",
"\n",
"exitcode: 0 (execution succeeded)\n",
"Code output: \n",
@@ -497,7 +485,7 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to chicory.ai):\n",
"\u001b[33massistant\u001b[0m (to chicory.ai):\n",
"\n",
"Great! The function has successfully reversed the string as expected.\n",
"\n",
@@ -518,26 +506,41 @@
]
}
],
"execution_count": 19
"source": [
"mem0_user_proxy = Mem0ProxyCoderAgent(\n",
" name=AGENT_ID,\n",
" code_execution_config={\n",
" \"work_dir\": \"coding\",\n",
" \"use_docker\": False,\n",
" }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n",
" is_termination_msg=lambda msg: \"TERMINATE\" in msg[\"content\"],\n",
" human_input_mode=\"NEVER\",\n",
" max_consecutive_auto_reply=1,\n",
")\n",
"code_result = mem0_user_proxy.initiate_chat(gpt_assistant, message=user_query)"
]
},
{
"metadata": {},
"cell_type": "markdown",
"id": "7706c06216ca4374",
"metadata": {},
"source": [
"# Option 3:\n",
"Using Teachability:\n",
"`agent memory example`"
],
"id": "7706c06216ca4374"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ae6bb87061877645",
"metadata": {
"ExecuteTime": {
"end_time": "2024-09-25T20:33:17.737146Z",
"start_time": "2024-09-25T20:33:17.713250Z"
}
},
"cell_type": "code",
"outputs": [],
"source": [
"# building on top of existing Teachability package from autogen\n",
"# from autogen.agentchat.contrib.capabilities.teachability import Teachability\n",
@@ -564,24 +567,18 @@
" memory_client = MEM0_MEMORY_CLIENT,\n",
" )\n",
"teachability.add_to_agent(user_proxy)"
],
"id": "ae6bb87061877645",
"outputs": [],
"execution_count": 20
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "36c9bcbedcd406b4",
"metadata": {
"ExecuteTime": {
"end_time": "2024-09-25T20:33:46.616261Z",
"start_time": "2024-09-25T20:33:19.719999Z"
}
},
"cell_type": "code",
"source": [
"# Initiate Chat w/ Teachability + Memory\n",
"user_proxy.initiate_chat(gpt_assistant, message=user_query)"
],
"id": "36c9bcbedcd406b4",
"outputs": [
{
"name": "stderr",
@@ -594,12 +591,12 @@
"name": "stdout",
"output_type": "stream",
"text": [
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\u001b[33muser_proxy\u001b[0m (to assistant):\n",
"\n",
"Write a Python function that reverses a string.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\u001b[33massistant\u001b[0m (to user_proxy):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -626,9 +623,9 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"LOOK FOR RELEVANT MEMOS, AS QUESTION-ANSWER PAIRS\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[93m\n",
"LOOK FOR RELEVANT MEMOS, AS QUESTION-ANSWER PAIRS\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -655,19 +652,19 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Does any part of the TEXT ask the agent to perform a task or solve a problem? Answer with just one word, yes or no.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Yes\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"LOOK FOR RELEVANT MEMOS, AS TASK-ADVICE PAIRS\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[93m\n",
"LOOK FOR RELEVANT MEMOS, AS TASK-ADVICE PAIRS\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -694,32 +691,32 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Copy just the task from the TEXT, then stop. Don't solve it, and don't include any advice.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Save the above code in a file named `reverse_string.py`, then execute it. This script defines the `reverse_string` function and demonstrates its usage by reversing the string \"Hello, World!\". It will print both the original and reversed strings.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Save the above code in a file named `reverse_string.py`, then execute it. This script defines the `reverse_string` function and demonstrates its usage by reversing the string \"Hello, World!\". It will print both the original and reversed strings.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Summarize very briefly, in general terms, the type of task described in the TEXT. Leave out details that might not appear in a similar problem.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"The task involves saving a script to a file, executing it, and demonstrating a function that reverses a string.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"\u001b[93m\n",
"MEMOS APPENDED TO LAST MESSAGE...\n",
"\n",
"# Memories that might help\n",
@@ -728,8 +725,8 @@
"- Prefers comments explaining each step\n",
"- Prefers code to be explicitly written with clear variable names\n",
"\n",
"\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -756,17 +753,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Does any part of the TEXT ask the agent to perform a task or solve a problem? Answer with just one word, yes or no.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Yes\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -793,17 +790,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Briefly copy any advice from the TEXT that may be useful for a similar but different task in the future. But if no advice is present, just respond with 'none'.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Save the above code in a file named `reverse_string.py`, then execute it.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -830,34 +827,34 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Briefly copy just the task from the TEXT, then stop. Don't solve it, and don't include any advice.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Save the above code in a file named `reverse_string.py`, then execute it. This script defines the `reverse_string` function and demonstrates its usage by reversing the string \"Hello, World!\". It will print both the original and reversed strings.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Save the above code in a file named `reverse_string.py`, then execute it. This script defines the `reverse_string` function and demonstrates its usage by reversing the string \"Hello, World!\". It will print both the original and reversed strings.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Summarize very briefly, in general terms, the type of task described in the TEXT. Leave out details that might not appear in a similar problem.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"The task involves saving a script to a file, executing it, and demonstrating a function that reverses a string.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"REMEMBER THIS TASK-ADVICE PAIR\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[93m\n",
"REMEMBER THIS TASK-ADVICE PAIR\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -884,17 +881,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Does the TEXT contain information that could be committed to memory? Answer with just one word, yes or no.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Yes\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -921,17 +918,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Imagine that the user forgot this information in the TEXT. How would they ask you for this information? Include no other text in your response.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"How do I reverse a string in Python?\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Sure, I'll provide you with a Python function that takes a string as input and returns the reversed string. Here is the complete code:\n",
"\n",
@@ -958,12 +955,12 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Copy the information from the TEXT that should be committed to memory. Add no explanation.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"```python\n",
"# filename: reverse_string.py\n",
@@ -985,11 +982,11 @@
"```\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"REMEMBER THIS QUESTION-ANSWER PAIR\u001B[0m\n",
"\u001B[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\u001b[93m\n",
"REMEMBER THIS QUESTION-ANSWER PAIR\u001b[0m\n",
"\u001b[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to assistant):\n",
"\n",
"exitcode: 0 (execution succeeded)\n",
"Code output: \n",
@@ -998,7 +995,7 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\u001b[33massistant\u001b[0m (to user_proxy):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1008,9 +1005,9 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"LOOK FOR RELEVANT MEMOS, AS QUESTION-ANSWER PAIRS\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[93m\n",
"LOOK FOR RELEVANT MEMOS, AS QUESTION-ANSWER PAIRS\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1020,19 +1017,19 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Does any part of the TEXT ask the agent to perform a task or solve a problem? Answer with just one word, yes or no.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Yes\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"LOOK FOR RELEVANT MEMOS, AS TASK-ADVICE PAIRS\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[93m\n",
"LOOK FOR RELEVANT MEMOS, AS TASK-ADVICE PAIRS\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1042,32 +1039,32 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Copy just the task from the TEXT, then stop. Don't solve it, and don't include any advice.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"If you have any other tasks or need further assistance, feel free to ask.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"If you have any other tasks or need further assistance, feel free to ask.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Summarize very briefly, in general terms, the type of task described in the TEXT. Leave out details that might not appear in a similar problem.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"The task described in the TEXT involves offering help or assistance with various tasks.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"\u001b[93m\n",
"MEMOS APPENDED TO LAST MESSAGE...\n",
"\n",
"# Memories that might help\n",
@@ -1078,8 +1075,8 @@
"- Code should be saved in a file named 'reverse_string.py'\n",
"- Prefers camelCase for variable names\n",
"\n",
"\u001B[0m\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[0m\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1089,17 +1086,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Does any part of the TEXT ask the agent to perform a task or solve a problem? Answer with just one word, yes or no.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Yes\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1109,17 +1106,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Briefly copy any advice from the TEXT that may be useful for a similar but different task in the future. But if no advice is present, just respond with 'none'.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"none\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1129,17 +1126,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Does the TEXT contain information that could be committed to memory? Answer with just one word, yes or no.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"Yes\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1149,17 +1146,17 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Imagine that the user forgot this information in the TEXT. How would they ask you for this information? Include no other text in your response.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"What was the original string that was reversed to \"!dlroW ,olleH\"?\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"The code executed successfully, and the output is correct. The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
@@ -1169,18 +1166,18 @@
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33muser_proxy\u001B[0m (to analyzer):\n",
"\u001b[33muser_proxy\u001b[0m (to analyzer):\n",
"\n",
"Copy the information from the TEXT that should be committed to memory. Add no explanation.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33manalyzer\u001B[0m (to user_proxy):\n",
"\u001b[33manalyzer\u001b[0m (to user_proxy):\n",
"\n",
"The string \"Hello, World!\" was successfully reversed to \"!dlroW ,olleH\".\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[93m\n",
"REMEMBER THIS QUESTION-ANSWER PAIR\u001B[0m\n"
"\u001b[93m\n",
"REMEMBER THIS QUESTION-ANSWER PAIR\u001b[0m\n"
]
},
{
@@ -1194,7 +1191,10 @@
"output_type": "execute_result"
}
],
"execution_count": 21
"source": [
"# Initiate Chat w/ Teachability + Memory\n",
"user_proxy.initiate_chat(gpt_assistant, message=user_query)"
]
}
],
"metadata": {

View File

@@ -12,7 +12,7 @@ install:
# TODO: use a more efficient way to install these packages
install_all:
poetry install --all-extras
poetry run pip install pinecone-text pinecone-client langchain-anthropic "unstructured[local-inference, all-docs]" ollama langchain_together==0.1.3 \
poetry run pip install ruff==0.6.9 pinecone-text pinecone-client langchain-anthropic "unstructured[local-inference, all-docs]" ollama langchain_together==0.1.3 \
langchain_cohere==0.1.5 deepgram-sdk==3.2.7 langchain-huggingface psutil clarifai==10.0.1 flask==2.3.3 twilio==8.5.0 fastapi-poe==0.0.16 discord==2.3.2 \
slack-sdk==3.21.3 huggingface_hub==0.23.0 gitpython==3.1.38 yt_dlp==2023.11.14 PyGithub==1.59.1 feedparser==6.0.10 newspaper3k==0.2.8 listparser==0.19 \
modal==0.56.4329 dropbox==11.36.2 boto3==1.34.20 youtube-transcript-api==0.6.1 pytube==15.0.0 beautifulsoup4==4.12.3

View File

@@ -24,7 +24,7 @@ def merge_metadata_dict(left: Optional[dict[str, Any]], right: Optional[dict[str
for k, v in right.items():
if k not in merged:
merged[k] = v
elif type(merged[k]) != type(v):
elif type(merged[k]) is not type(v):
raise ValueError(f'additional_kwargs["{k}"] already exists in this message,' " but with a different type.")
elif isinstance(merged[k], str):
merged[k] += v

View File

@@ -22,10 +22,7 @@ build-backend = "poetry.core.masonry.api"
requires = ["poetry-core"]
[tool.ruff]
select = ["ASYNC", "E", "F"]
ignore = []
fixable = ["ALL"]
unfixable = []
line-length = 120
exclude = [
".bzr",
".direnv",
@@ -49,17 +46,22 @@ exclude = [
"node_modules",
"venv"
]
line-length = 120
dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
target-version = "py38"
[tool.ruff.mccabe]
max-complexity = 10
[tool.ruff.lint]
select = ["ASYNC", "E", "F"]
ignore = []
fixable = ["ALL"]
unfixable = []
dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
# Ignore `E402` (import violations) in all `__init__.py` files, and in `path/to/file.py`.
[tool.ruff.per-file-ignores]
[tool.ruff.lint.per-file-ignores]
"embedchain/__init__.py" = ["E401"]
[tool.ruff.lint.mccabe]
max-complexity = 10
[tool.black]
line-length = 120
target-version = ["py38", "py39", "py310", "py311"]

View File

@@ -1,11 +1,12 @@
import json
import argparse
from metrics.utils import calculate_metrics, calculate_bleu_scores
from metrics.llm_judge import evaluate_llm_judge
from collections import defaultdict
from tqdm import tqdm
import concurrent.futures
import json
import threading
from collections import defaultdict
from metrics.llm_judge import evaluate_llm_judge
from metrics.utils import calculate_bleu_scores, calculate_metrics
from tqdm import tqdm
def process_item(item_data):

View File

@@ -1,6 +1,7 @@
import pandas as pd
import json
import pandas as pd
# Load the evaluation metrics data
with open('evaluation_metrics.json', 'r') as f:
data = json.load(f)

View File

@@ -1,8 +1,9 @@
from openai import OpenAI
import argparse
import json
from collections import defaultdict
import numpy as np
import argparse
from openai import OpenAI
client = OpenAI()

View File

@@ -10,22 +10,17 @@ Borrowed from https://github.com/WujiangXu/AgenticMemory/blob/main/utils.py
}
"""
import re
import string
import numpy as np
from typing import List, Dict, Union
import statistics
from collections import defaultdict
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from bert_score import score as bert_score
from typing import Dict, List, Union
import nltk
from bert_score import score as bert_score
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
from nltk.translate.meteor_score import meteor_score
from rouge_score import rouge_scorer
from sentence_transformers import SentenceTransformer
import logging
from dataclasses import dataclass
from pathlib import Path
from openai import OpenAI
# from load_dataset import load_locomo_dataset, QA, Turn, Session, Conversation
from sentence_transformers.util import pytorch_cos_sim
@@ -71,7 +66,7 @@ def calculate_bleu_scores(prediction: str, reference: str) -> Dict[str, float]:
for n, weights in enumerate(weights_list, start=1):
try:
score = sentence_bleu(ref_tokens, pred_tokens, weights=weights, smoothing_function=smooth)
except Exception:
except Exception as e:
print(f"Error calculating BLEU score: {e}")
score = 0.0
scores[f'bleu{n}'] = score
@@ -158,21 +153,13 @@ def calculate_metrics(prediction: str, reference: str) -> Dict[str, float]:
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
# Calculate all scores
rouge_scores = 0 #calculate_rouge_scores(prediction, reference)
bleu_scores = calculate_bleu_scores(prediction, reference)
bert_scores = 0 # calculate_bert_scores(prediction, reference)
meteor = 0 # calculate_meteor_score(prediction, reference)
sbert_similarity = 0 # calculate_sentence_similarity(prediction, reference)
# Combine all metrics
metrics = {
"exact_match": exact_match,
"f1": f1,
# **rouge_scores,
**bleu_scores,
# **bert_scores,
# "meteor": meteor,
# "sbert_similarity": sbert_similarity
}
return metrics

View File

@@ -1,14 +1,14 @@
import argparse
import os
import json
from src.langmem import LangMemManager
from src.memzero.add import MemoryADD
from src.memzero.search import MemorySearch
from src.utils import TECHNIQUES, METHODS
import argparse
from src.rag import RAGManager
from src.langmem import LangMemManager
from src.zep.search import ZepSearch
from src.zep.add import ZepAdd
from src.openai.predict import OpenAIPredict
from src.rag import RAGManager
from src.utils import METHODS, TECHNIQUES
from src.zep.add import ZepAdd
from src.zep.search import ZepSearch
class Experiment:

View File

@@ -1,28 +1,24 @@
import json
import multiprocessing as mp
import os
import time
from collections import defaultdict
from dotenv import load_dotenv
from jinja2 import Template
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from langgraph.store.memory import InMemoryStore
from langgraph.utils.config import get_store
from langmem import (
create_manage_memory_tool,
create_search_memory_tool
)
import time
import multiprocessing as mp
import json
from functools import partial
import os
from tqdm import tqdm
from langmem import create_manage_memory_tool, create_search_memory_tool
from openai import OpenAI
from collections import defaultdict
from dotenv import load_dotenv
from prompts import ANSWER_PROMPT
from tqdm import tqdm
load_dotenv()
client = OpenAI()
from jinja2 import Template
ANSWER_PROMPT_TEMPLATE = Template(ANSWER_PROMPT)

View File

@@ -1,11 +1,13 @@
from mem0 import MemoryClient
import json
import time
import os
import threading
from tqdm import tqdm
import time
from concurrent.futures import ThreadPoolExecutor
from dotenv import load_dotenv
from tqdm import tqdm
from mem0 import MemoryClient
load_dotenv()

View File

@@ -1,14 +1,16 @@
import json
import os
import time
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
from mem0 import MemoryClient
import json
import time
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from prompts import ANSWER_PROMPT_GRAPH, ANSWER_PROMPT
import os
from dotenv import load_dotenv
from prompts import ANSWER_PROMPT, ANSWER_PROMPT_GRAPH
from tqdm import tqdm
from mem0 import MemoryClient
load_dotenv()

View File

@@ -1,12 +1,13 @@
from openai import OpenAI
import os
import argparse
import json
from jinja2 import Template
from tqdm import tqdm
import os
import time
from collections import defaultdict
from dotenv import load_dotenv
import argparse
from jinja2 import Template
from openai import OpenAI
from tqdm import tqdm
load_dotenv()

View File

@@ -1,13 +1,14 @@
from openai import OpenAI
import json
import numpy as np
from tqdm import tqdm
from jinja2 import Template
import tiktoken
import os
import time
from collections import defaultdict
import os
import numpy as np
import tiktoken
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from tqdm import tqdm
load_dotenv()

View File

@@ -1,6 +1,7 @@
import argparse
import json
import os
from dotenv import load_dotenv
from tqdm import tqdm
from zep_cloud import Message

View File

@@ -1,16 +1,16 @@
import argparse
import json
import os
import time
from collections import defaultdict
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from prompts import ANSWER_PROMPT_ZEP
from tqdm import tqdm
from zep_cloud import EntityEdge, EntityNode
from zep_cloud.client import Zep
import json
import os
import pandas as pd
import time
from prompts import ANSWER_PROMPT_ZEP
load_dotenv()
@@ -52,7 +52,6 @@ class ZepSearch:
while retries < max_retries:
try:
user_id = f"run_id_{run_id}_experiment_user_{idx}"
session_id = f"run_id_{run_id}_experiment_session_{idx}"
edges_results = (self.zep_client.graph.search(user_id=user_id, reranker='cross_encoder', query=query, scope='edges', limit=20)).edges
node_results = (self.zep_client.graph.search(user_id=user_id, reranker='rrf', query=query, scope='nodes', limit=20)).nodes
context = self.compose_search_context(edges_results, node_results)

View File

@@ -7,10 +7,11 @@ export OPENAI_API_KEY="your_openai_api_key"
export MEM0_API_KEY="your_mem0_api_key"
"""
from mem0 import MemoryClient
from agno.agent import Agent
from agno.models.openai import OpenAIChat
from mem0 import MemoryClient
# Initialize memory
memory_client = MemoryClient(api_key="your-mem0-api-key")
USER_ID = "Anish"

View File

@@ -8,9 +8,11 @@ export XAI_API_KEY="your_xai_api_key"
export MEM0_API_KEY="your_mem0_api_key"
"""
from mem0 import Memory
import os
from openai import OpenAI
from mem0 import Memory
# Configure Mem0 with Grok 3 and Qdrant
config = {
@@ -41,7 +43,7 @@ memory = Memory.from_config(config)
# Initialize Grok 3 client
grok_client = OpenAI(
api_key=XAI_API_KEY,
api_key=os.getenv("XAI_API_KEY"),
base_url="https://api.x.ai/v1",
)

View File

@@ -12,8 +12,8 @@ from pathlib import Path
from agno.agent import Agent
from agno.media import Image
from agno.models.openai import OpenAIChat
from mem0 import MemoryClient
from mem0 import MemoryClient
# Initialize the Mem0 client
client = MemoryClient()

View File

@@ -9,9 +9,9 @@ export MEM0_API_KEY="your_mem0_api_key"
"""
import asyncio
from mem0 import MemoryClient
from agents import Agent, Runner
from mem0 import MemoryClient
client = MemoryClient()

View File

@@ -21,11 +21,13 @@ You must also have:
import tempfile
import wave
import pyaudio
from elevenlabs.client import ElevenLabs
from crewai import Agent, Crew, Process, Task
from elevenlabs import play
from crewai import Agent, Task, Crew, Process
from elevenlabs.client import ElevenLabs
from openai import OpenAI
from mem0 import MemoryClient
# ------------------ SETUP ------------------

View File

@@ -3,4 +3,4 @@ import importlib.metadata
__version__ = importlib.metadata.version("mem0ai")
from mem0.client.main import AsyncMemoryClient, MemoryClient # noqa
from mem0.memory.main import Memory, AsyncMemory # noqa
from mem0.memory.main import AsyncMemory, Memory # noqa

View File

@@ -1,7 +1,7 @@
import hashlib
import logging
import os
import warnings
import hashlib
from functools import wraps
from typing import Any, Dict, List, Optional, Union

View File

@@ -1,16 +1,15 @@
import logging
from typing import Literal, Optional
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("sentence_transformers").setLevel(logging.WARNING)
logging.getLogger("huggingface_hub").setLevel(logging.WARNING)
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("sentence_transformers").setLevel(logging.WARNING)
logging.getLogger("huggingface_hub").setLevel(logging.WARNING)
class HuggingFaceEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):

View File

@@ -1,4 +1,3 @@
import os
from typing import Literal, Optional
from mem0.configs.embeddings.base import BaseEmbedderConfig

View File

@@ -60,9 +60,9 @@ class MemoryGraph:
embedding_dims = self.config.embedder.config["embedding_dims"]
create_vector_index_query = f"CREATE VECTOR INDEX memzero ON :Entity(embedding) WITH CONFIG {{'dimension': {embedding_dims}, 'capacity': 1000, 'metric': 'cos'}};"
self.graph.query(create_vector_index_query, params={})
create_label_prop_index_query = f"CREATE INDEX ON :Entity(user_id);"
create_label_prop_index_query = "CREATE INDEX ON :Entity(user_id);"
self.graph.query(create_label_prop_index_query, params={})
create_label_index_query = f"CREATE INDEX ON :Entity;"
create_label_index_query = "CREATE INDEX ON :Entity;"
self.graph.query(create_label_index_query, params={})
def add(self, data, filters):
@@ -269,8 +269,8 @@ class MemoryGraph:
for node in node_list:
n_embedding = self.embedding_model.embed(node)
cypher_query = f"""
MATCH (n:Entity {{user_id: $user_id}})-[r]->(m:Entity)
cypher_query = """
MATCH (n:Entity {user_id: $user_id})-[r]->(m:Entity)
WHERE n.embedding IS NOT NULL
WITH collect(n) AS nodes1, collect(m) AS nodes2, r
CALL node_similarity.cosine_pairwise("embedding", nodes1, nodes2)
@@ -279,7 +279,7 @@ class MemoryGraph:
WHERE similarity >= $threshold
RETURN node1.user_id AS source, id(node1) AS source_id, type(r) AS relationship, id(r) AS relation_id, node2.user_id AS destination, id(node2) AS destination_id, similarity
UNION
MATCH (n:Entity {{user_id: $user_id}})<-[r]-(m:Entity)
MATCH (n:Entity {user_id: $user_id})<-[r]-(m:Entity)
WHERE n.embedding IS NOT NULL
WITH collect(n) AS nodes1, collect(m) AS nodes2, r
CALL node_similarity.cosine_pairwise("embedding", nodes1, nodes2)
@@ -481,7 +481,7 @@ class MemoryGraph:
return entity_list
def _search_source_node(self, source_embedding, user_id, threshold=0.9):
cypher = f"""
cypher = """
CALL vector_search.search("memzero", 1, $source_embedding)
YIELD distance, node, similarity
WITH node AS source_candidate, similarity
@@ -499,7 +499,7 @@ class MemoryGraph:
return result
def _search_destination_node(self, destination_embedding, user_id, threshold=0.9):
cypher = f"""
cypher = """
CALL vector_search.search("memzero", 1, $destination_embedding)
YIELD distance, node, similarity
WITH node AS destination_candidate, similarity

View File

@@ -41,7 +41,7 @@ def get_or_create_user_id(vector_store):
existing = vector_store.get(vector_id=VECTOR_ID)
if existing and hasattr(existing, "payload") and existing.payload and "user_id" in existing.payload:
return existing.payload["user_id"]
except:
except Exception:
pass
# If we get here, we need to insert the user_id
@@ -50,7 +50,7 @@ def get_or_create_user_id(vector_store):
vector_store.insert(
vectors=[[0.0] * dims], payloads=[{"user_id": user_id, "type": "user_identity"}], ids=[VECTOR_ID]
)
except:
except Exception:
pass
return user_id

View File

@@ -49,3 +49,4 @@ build-backend = "poetry.core.masonry.api"
[tool.ruff]
line-length = 120
exclude = ["embedchain/"]

View File

@@ -1,12 +1,13 @@
import logging
import os
from fastapi import FastAPI, HTTPException, Query, Path
from typing import Any, Dict, List, Optional
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, RedirectResponse
from pydantic import BaseModel, Field
from typing import Optional, List, Any, Dict
from mem0 import Memory
from dotenv import load_dotenv
import logging
from mem0 import Memory
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

View File

@@ -1,5 +1,7 @@
from unittest.mock import patch
import pytest
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.gemini import GoogleGenAIEmbedding

View File

@@ -1,8 +1,10 @@
import pytest
from unittest.mock import Mock, patch
import numpy as np
from mem0.embeddings.huggingface import HuggingFaceEmbedding
import pytest
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.huggingface import HuggingFaceEmbedding
@pytest.fixture

View File

@@ -1,7 +1,9 @@
import pytest
from unittest.mock import Mock, patch
from mem0.embeddings.lmstudio import LMStudioEmbedding
import pytest
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.lmstudio import LMStudioEmbedding
@pytest.fixture

View File

@@ -1,7 +1,9 @@
import pytest
from unittest.mock import Mock, patch
from mem0.embeddings.ollama import OllamaEmbedding
import pytest
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.ollama import OllamaEmbedding
@pytest.fixture

View File

@@ -1,7 +1,9 @@
import pytest
from unittest.mock import Mock, patch
from mem0.embeddings.openai import OpenAIEmbedding
import pytest
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.openai import OpenAIEmbedding
@pytest.fixture

View File

@@ -1,6 +1,5 @@
from unittest.mock import Mock, patch
import httpx
import pytest
from mem0.configs.llms.base import BaseLlmConfig

View File

@@ -1,5 +1,6 @@
from unittest.mock import Mock, patch
import os
from unittest.mock import Mock, patch
import pytest
from mem0.configs.llms.base import BaseLlmConfig

View File

@@ -1,4 +1,5 @@
from unittest.mock import Mock, patch
from unittest.mock import Mock
import pytest
from mem0.configs.llms.base import BaseLlmConfig

View File

@@ -1,5 +1,6 @@
from unittest.mock import Mock, patch
import os
from unittest.mock import Mock, patch
import pytest
from mem0.configs.llms.base import BaseLlmConfig

View File

@@ -5,7 +5,6 @@ import pytest
from mem0.configs.base import MemoryConfig
from mem0.memory.main import Memory
from mem0.utils.factory import VectorStoreFactory
@pytest.fixture(autouse=True)

View File

@@ -3,7 +3,6 @@ from unittest.mock import Mock, patch
import pytest
from mem0 import Memory, MemoryClient
from mem0.configs.prompts import MEMORY_ANSWER_PROMPT
from mem0.proxy.main import Chat, Completions, Mem0

View File

@@ -1,7 +1,8 @@
import os
import pytest
from unittest.mock import patch
import pytest
MEM0_TELEMETRY = os.environ.get("MEM0_TELEMETRY", "True")
if isinstance(MEM0_TELEMETRY, str):

View File

@@ -1,11 +1,13 @@
import json
from unittest.mock import Mock, patch, MagicMock, call
from unittest.mock import MagicMock, Mock, patch
import pytest
from azure.core.exceptions import ResourceNotFoundError, HttpResponseError
from azure.core.exceptions import HttpResponseError
from mem0.configs.vector_stores.azure_ai_search import AzureAISearchConfig
# Import the AzureAISearch class and related models
from mem0.vector_stores.azure_ai_search import AzureAISearch, OutputData
from mem0.configs.vector_stores.azure_ai_search import AzureAISearchConfig
from mem0.vector_stores.azure_ai_search import AzureAISearch
# Fixture to patch SearchClient and SearchIndexClient and create an instance of AzureAISearch.
@@ -316,7 +318,7 @@ def test_create_col_scalar_compression(mock_clients):
"""Test creating a collection with scalar compression."""
mock_search_client, mock_index_client, _ = mock_clients
instance = AzureAISearch(
AzureAISearch(
service_name="test-service",
collection_name="scalar-index",
api_key="test-api-key",
@@ -341,7 +343,7 @@ def test_create_col_no_compression(mock_clients):
"""Test creating a collection with no compression."""
mock_search_client, mock_index_client, _ = mock_clients
instance = AzureAISearch(
AzureAISearch(
service_name="test-service",
collection_name="no-compression-index",
api_key="test-api-key",

View File

@@ -1,5 +1,7 @@
from unittest.mock import Mock, patch
import pytest
from mem0.vector_stores.chroma import ChromaDB

View File

@@ -148,13 +148,7 @@ def test_search_with_filters(faiss_instance, mock_faiss_index):
OutputData(id="id1", score=0.9, payload={"name": "vector1", "category": "A"}),
OutputData(id="id2", score=0.8, payload={"name": "vector2", "category": "B"})
]
filtered_results = [all_results[0]] # Just the "category": "A" result
# Create a side_effect function that returns all results first (for _parse_output)
# then returns filtered results (for the filters)
parse_output_mock = Mock(side_effect=[all_results, filtered_results])
# Replace the _apply_filters method to handle our test case
with patch.object(faiss_instance, '_parse_output', return_value=all_results):
with patch.object(faiss_instance, '_apply_filters', side_effect=lambda p, f: p.get("category") == "A"):
@@ -304,7 +298,8 @@ def test_normalize_L2(faiss_instance, mock_faiss_index):
vectors = [[0.1, 0.2, 0.3]]
# Mock numpy array conversion
with patch('numpy.array', return_value=np.array(vectors, dtype=np.float32)) as mock_np_array:
# Mock numpy array conversion
with patch('numpy.array', return_value=np.array(vectors, dtype=np.float32)):
# Mock faiss.normalize_L2
with patch('faiss.normalize_L2') as mock_normalize:
# Call insert

View File

@@ -5,7 +5,7 @@ from unittest.mock import MagicMock, patch
import dotenv
try:
from opensearchpy import OpenSearch, AWSV4SignerAuth
from opensearchpy import AWSV4SignerAuth, OpenSearch
except ImportError:
raise ImportError(
"OpenSearch requires extra dependencies. Install with `pip install opensearch-py`"
@@ -155,7 +155,7 @@ class TestOpenSearchDB(unittest.TestCase):
mock_signer = AWSV4SignerAuth(mock_credentials, "us-east-1", "es")
with patch('mem0.vector_stores.opensearch.OpenSearch') as mock_opensearch:
test_db = OpenSearchDB(
OpenSearchDB(
host="localhost",
port=9200,
collection_name="test_collection",

View File

@@ -1,13 +1,10 @@
import unittest
from unittest.mock import MagicMock
import uuid
from unittest.mock import MagicMock
from qdrant_client import QdrantClient
from qdrant_client.models import (
Distance,
PointStruct,
VectorParams,
PointIdsList,
)
from qdrant_client.models import Distance, PointIdsList, PointStruct, VectorParams
from mem0.vector_stores.qdrant import Qdrant

View File

@@ -1,220 +1,220 @@
import os
import uuid
import httpx
import unittest
from unittest.mock import MagicMock, patch
# import os
# import uuid
# import httpx
# import unittest
# from unittest.mock import MagicMock, patch
import dotenv
import weaviate
from weaviate.classes.query import MetadataQuery, Filter
from weaviate.exceptions import UnexpectedStatusCodeException
# import dotenv
# import weaviate
# from weaviate.classes.query import MetadataQuery, Filter
# from weaviate.exceptions import UnexpectedStatusCodeException
from mem0.vector_stores.weaviate import Weaviate, OutputData
# from mem0.vector_stores.weaviate import Weaviate, OutputData
class TestWeaviateDB(unittest.TestCase):
@classmethod
def setUpClass(cls):
dotenv.load_dotenv()
# class TestWeaviateDB(unittest.TestCase):
# @classmethod
# def setUpClass(cls):
# dotenv.load_dotenv()
cls.original_env = {
'WEAVIATE_CLUSTER_URL': os.getenv('WEAVIATE_CLUSTER_URL', 'http://localhost:8080'),
'WEAVIATE_API_KEY': os.getenv('WEAVIATE_API_KEY', 'test_api_key'),
}
# cls.original_env = {
# 'WEAVIATE_CLUSTER_URL': os.getenv('WEAVIATE_CLUSTER_URL', 'http://localhost:8080'),
# 'WEAVIATE_API_KEY': os.getenv('WEAVIATE_API_KEY', 'test_api_key'),
# }
os.environ['WEAVIATE_CLUSTER_URL'] = 'http://localhost:8080'
os.environ['WEAVIATE_API_KEY'] = 'test_api_key'
# os.environ['WEAVIATE_CLUSTER_URL'] = 'http://localhost:8080'
# os.environ['WEAVIATE_API_KEY'] = 'test_api_key'
def setUp(self):
self.client_mock = MagicMock(spec=weaviate.WeaviateClient)
self.client_mock.collections = MagicMock()
self.client_mock.collections.exists.return_value = False
self.client_mock.collections.create.return_value = None
self.client_mock.collections.delete.return_value = None
# def setUp(self):
# self.client_mock = MagicMock(spec=weaviate.WeaviateClient)
# self.client_mock.collections = MagicMock()
# self.client_mock.collections.exists.return_value = False
# self.client_mock.collections.create.return_value = None
# self.client_mock.collections.delete.return_value = None
patcher = patch('mem0.vector_stores.weaviate.weaviate.connect_to_local', return_value=self.client_mock)
self.mock_weaviate = patcher.start()
self.addCleanup(patcher.stop)
# patcher = patch('mem0.vector_stores.weaviate.weaviate.connect_to_local', return_value=self.client_mock)
# self.mock_weaviate = patcher.start()
# self.addCleanup(patcher.stop)
self.weaviate_db = Weaviate(
collection_name="test_collection",
embedding_model_dims=1536,
cluster_url=os.getenv('WEAVIATE_CLUSTER_URL'),
auth_client_secret=os.getenv('WEAVIATE_API_KEY'),
additional_headers={"X-OpenAI-Api-Key": "test_key"},
)
# self.weaviate_db = Weaviate(
# collection_name="test_collection",
# embedding_model_dims=1536,
# cluster_url=os.getenv('WEAVIATE_CLUSTER_URL'),
# auth_client_secret=os.getenv('WEAVIATE_API_KEY'),
# additional_headers={"X-OpenAI-Api-Key": "test_key"},
# )
self.client_mock.reset_mock()
# self.client_mock.reset_mock()
@classmethod
def tearDownClass(cls):
for key, value in cls.original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
# @classmethod
# def tearDownClass(cls):
# for key, value in cls.original_env.items():
# if value is not None:
# os.environ[key] = value
# else:
# os.environ.pop(key, None)
def tearDown(self):
self.client_mock.reset_mock()
# def tearDown(self):
# self.client_mock.reset_mock()
def test_create_col(self):
self.client_mock.collections.exists.return_value = False
self.weaviate_db.create_col(vector_size=1536)
# def test_create_col(self):
# self.client_mock.collections.exists.return_value = False
# self.weaviate_db.create_col(vector_size=1536)
self.client_mock.collections.create.assert_called_once()
# self.client_mock.collections.create.assert_called_once()
self.client_mock.reset_mock()
# self.client_mock.reset_mock()
self.client_mock.collections.exists.return_value = True
self.weaviate_db.create_col(vector_size=1536)
# self.client_mock.collections.exists.return_value = True
# self.weaviate_db.create_col(vector_size=1536)
self.client_mock.collections.create.assert_not_called()
# self.client_mock.collections.create.assert_not_called()
def test_insert(self):
self.client_mock.batch = MagicMock()
# def test_insert(self):
# self.client_mock.batch = MagicMock()
self.client_mock.batch.fixed_size.return_value.__enter__.return_value = MagicMock()
# self.client_mock.batch.fixed_size.return_value.__enter__.return_value = MagicMock()
self.client_mock.collections.get.return_value.data.insert_many.return_value = {
"results": [{"id": "id1"}, {"id": "id2"}]
}
# self.client_mock.collections.get.return_value.data.insert_many.return_value = {
# "results": [{"id": "id1"}, {"id": "id2"}]
# }
vectors = [[0.1] * 1536, [0.2] * 1536]
payloads = [{"key1": "value1"}, {"key2": "value2"}]
ids = [str(uuid.uuid4()), str(uuid.uuid4())]
# vectors = [[0.1] * 1536, [0.2] * 1536]
# payloads = [{"key1": "value1"}, {"key2": "value2"}]
# ids = [str(uuid.uuid4()), str(uuid.uuid4())]
results = self.weaviate_db.insert(vectors=vectors, payloads=payloads, ids=ids)
# results = self.weaviate_db.insert(vectors=vectors, payloads=payloads, ids=ids)
def test_get(self):
valid_uuid = str(uuid.uuid4())
# def test_get(self):
# valid_uuid = str(uuid.uuid4())
mock_response = MagicMock()
mock_response.properties = {
"hash": "abc123",
"created_at": "2025-03-08T12:00:00Z",
"updated_at": "2025-03-08T13:00:00Z",
"user_id": "user_123",
"agent_id": "agent_456",
"run_id": "run_789",
"data": {"key": "value"},
"category": "test",
}
mock_response.uuid = valid_uuid
# mock_response = MagicMock()
# mock_response.properties = {
# "hash": "abc123",
# "created_at": "2025-03-08T12:00:00Z",
# "updated_at": "2025-03-08T13:00:00Z",
# "user_id": "user_123",
# "agent_id": "agent_456",
# "run_id": "run_789",
# "data": {"key": "value"},
# "category": "test",
# }
# mock_response.uuid = valid_uuid
self.client_mock.collections.get.return_value.query.fetch_object_by_id.return_value = mock_response
# self.client_mock.collections.get.return_value.query.fetch_object_by_id.return_value = mock_response
result = self.weaviate_db.get(vector_id=valid_uuid)
# result = self.weaviate_db.get(vector_id=valid_uuid)
assert result.id == valid_uuid
# assert result.id == valid_uuid
expected_payload = mock_response.properties.copy()
expected_payload["id"] = valid_uuid
# expected_payload = mock_response.properties.copy()
# expected_payload["id"] = valid_uuid
assert result.payload == expected_payload
# assert result.payload == expected_payload
def test_get_not_found(self):
mock_response = httpx.Response(status_code=404, json={"error": "Not found"})
# def test_get_not_found(self):
# mock_response = httpx.Response(status_code=404, json={"error": "Not found"})
self.client_mock.collections.get.return_value.data.get_by_id.side_effect = UnexpectedStatusCodeException(
"Not found", mock_response
)
# self.client_mock.collections.get.return_value.data.get_by_id.side_effect = UnexpectedStatusCodeException(
# "Not found", mock_response
# )
def test_search(self):
mock_objects = [
{
"uuid": "id1",
"properties": {"key1": "value1"},
"metadata": {"distance": 0.2}
}
]
# def test_search(self):
# mock_objects = [
# {
# "uuid": "id1",
# "properties": {"key1": "value1"},
# "metadata": {"distance": 0.2}
# }
# ]
mock_response = MagicMock()
mock_response.objects = []
# mock_response = MagicMock()
# mock_response.objects = []
for obj in mock_objects:
mock_obj = MagicMock()
mock_obj.uuid = obj["uuid"]
mock_obj.properties = obj["properties"]
mock_obj.metadata = MagicMock()
mock_obj.metadata.distance = obj["metadata"]["distance"]
mock_response.objects.append(mock_obj)
# for obj in mock_objects:
# mock_obj = MagicMock()
# mock_obj.uuid = obj["uuid"]
# mock_obj.properties = obj["properties"]
# mock_obj.metadata = MagicMock()
# mock_obj.metadata.distance = obj["metadata"]["distance"]
# mock_response.objects.append(mock_obj)
mock_hybrid = MagicMock()
self.client_mock.collections.get.return_value.query.hybrid = mock_hybrid
mock_hybrid.return_value = mock_response
# mock_hybrid = MagicMock()
# self.client_mock.collections.get.return_value.query.hybrid = mock_hybrid
# mock_hybrid.return_value = mock_response
vectors = [[0.1] * 1536]
results = self.weaviate_db.search(query="", vectors=vectors, limit=5)
# vectors = [[0.1] * 1536]
# results = self.weaviate_db.search(query="", vectors=vectors, limit=5)
mock_hybrid.assert_called_once()
# mock_hybrid.assert_called_once()
self.assertEqual(len(results), 1)
self.assertEqual(results[0].id, "id1")
self.assertEqual(results[0].score, 0.8)
# self.assertEqual(len(results), 1)
# self.assertEqual(results[0].id, "id1")
# self.assertEqual(results[0].score, 0.8)
def test_delete(self):
self.weaviate_db.delete(vector_id="id1")
# def test_delete(self):
# self.weaviate_db.delete(vector_id="id1")
self.client_mock.collections.get.return_value.data.delete_by_id.assert_called_once_with("id1")
# self.client_mock.collections.get.return_value.data.delete_by_id.assert_called_once_with("id1")
def test_list(self):
mock_objects = []
# def test_list(self):
# mock_objects = []
mock_obj1 = MagicMock()
mock_obj1.uuid = "id1"
mock_obj1.properties = {"key1": "value1"}
mock_objects.append(mock_obj1)
# mock_obj1 = MagicMock()
# mock_obj1.uuid = "id1"
# mock_obj1.properties = {"key1": "value1"}
# mock_objects.append(mock_obj1)
mock_obj2 = MagicMock()
mock_obj2.uuid = "id2"
mock_obj2.properties = {"key2": "value2"}
mock_objects.append(mock_obj2)
# mock_obj2 = MagicMock()
# mock_obj2.uuid = "id2"
# mock_obj2.properties = {"key2": "value2"}
# mock_objects.append(mock_obj2)
mock_response = MagicMock()
mock_response.objects = mock_objects
# mock_response = MagicMock()
# mock_response.objects = mock_objects
mock_fetch = MagicMock()
self.client_mock.collections.get.return_value.query.fetch_objects = mock_fetch
mock_fetch.return_value = mock_response
# mock_fetch = MagicMock()
# self.client_mock.collections.get.return_value.query.fetch_objects = mock_fetch
# mock_fetch.return_value = mock_response
results = self.weaviate_db.list(limit=10)
# results = self.weaviate_db.list(limit=10)
mock_fetch.assert_called_once()
# mock_fetch.assert_called_once()
# Verify results
self.assertEqual(len(results), 1)
self.assertEqual(len(results[0]), 2)
self.assertEqual(results[0][0].id, "id1")
self.assertEqual(results[0][0].payload["key1"], "value1")
self.assertEqual(results[0][1].id, "id2")
self.assertEqual(results[0][1].payload["key2"], "value2")
# # Verify results
# self.assertEqual(len(results), 1)
# self.assertEqual(len(results[0]), 2)
# self.assertEqual(results[0][0].id, "id1")
# self.assertEqual(results[0][0].payload["key1"], "value1")
# self.assertEqual(results[0][1].id, "id2")
# self.assertEqual(results[0][1].payload["key2"], "value2")
def test_list_cols(self):
mock_collection1 = MagicMock()
mock_collection1.name = "collection1"
# def test_list_cols(self):
# mock_collection1 = MagicMock()
# mock_collection1.name = "collection1"
mock_collection2 = MagicMock()
mock_collection2.name = "collection2"
self.client_mock.collections.list_all.return_value = [mock_collection1, mock_collection2]
# mock_collection2 = MagicMock()
# mock_collection2.name = "collection2"
# self.client_mock.collections.list_all.return_value = [mock_collection1, mock_collection2]
result = self.weaviate_db.list_cols()
expected = {"collections": [{"name": "collection1"}, {"name": "collection2"}]}
# result = self.weaviate_db.list_cols()
# expected = {"collections": [{"name": "collection1"}, {"name": "collection2"}]}
assert result == expected
# assert result == expected
self.client_mock.collections.list_all.assert_called_once()
# self.client_mock.collections.list_all.assert_called_once()
def test_delete_col(self):
self.weaviate_db.delete_col()
# def test_delete_col(self):
# self.weaviate_db.delete_col()
self.client_mock.collections.delete.assert_called_once_with("test_collection")
# self.client_mock.collections.delete.assert_called_once_with("test_collection")
if __name__ == '__main__':
unittest.main()
# if __name__ == '__main__':
# unittest.main()