104 lines
3.1 KiB
Python
104 lines
3.1 KiB
Python
from unittest.mock import Mock
|
|
|
|
import pytest
|
|
|
|
from mem0.configs.llms.base import BaseLlmConfig
|
|
from mem0.llms.langchain import LangchainLLM
|
|
|
|
# Add the import for BaseChatModel
|
|
try:
|
|
from langchain.chat_models.base import BaseChatModel
|
|
except ImportError:
|
|
from unittest.mock import MagicMock
|
|
BaseChatModel = MagicMock
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_langchain_model():
|
|
"""Mock a Langchain model for testing."""
|
|
mock_model = Mock(spec=BaseChatModel)
|
|
mock_model.invoke.return_value = Mock(content="This is a test response")
|
|
return mock_model
|
|
|
|
|
|
def test_langchain_initialization(mock_langchain_model):
|
|
"""Test that LangchainLLM initializes correctly with a valid model."""
|
|
# Create a config with the model instance directly
|
|
config = BaseLlmConfig(
|
|
model=mock_langchain_model,
|
|
temperature=0.7,
|
|
max_tokens=100,
|
|
api_key="test-api-key"
|
|
)
|
|
|
|
# Initialize the LangchainLLM
|
|
llm = LangchainLLM(config)
|
|
|
|
# Verify the model was correctly assigned
|
|
assert llm.langchain_model == mock_langchain_model
|
|
|
|
|
|
def test_generate_response(mock_langchain_model):
|
|
"""Test that generate_response correctly processes messages and returns a response."""
|
|
# Create a config with the model instance
|
|
config = BaseLlmConfig(
|
|
model=mock_langchain_model,
|
|
temperature=0.7,
|
|
max_tokens=100,
|
|
api_key="test-api-key"
|
|
)
|
|
|
|
# Initialize the LangchainLLM
|
|
llm = LangchainLLM(config)
|
|
|
|
# Create test messages
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Hello, how are you?"},
|
|
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
|
|
{"role": "user", "content": "Tell me a joke."}
|
|
]
|
|
|
|
# Get response
|
|
response = llm.generate_response(messages)
|
|
|
|
# Verify the correct message format was passed to the model
|
|
expected_langchain_messages = [
|
|
("system", "You are a helpful assistant."),
|
|
("human", "Hello, how are you?"),
|
|
("ai", "I'm doing well! How can I help you?"),
|
|
("human", "Tell me a joke.")
|
|
]
|
|
|
|
mock_langchain_model.invoke.assert_called_once()
|
|
# Extract the first argument of the first call
|
|
actual_messages = mock_langchain_model.invoke.call_args[0][0]
|
|
assert actual_messages == expected_langchain_messages
|
|
assert response == "This is a test response"
|
|
|
|
|
|
def test_invalid_model():
|
|
"""Test that LangchainLLM raises an error with an invalid model."""
|
|
config = BaseLlmConfig(
|
|
model="not-a-valid-model-instance",
|
|
temperature=0.7,
|
|
max_tokens=100,
|
|
api_key="test-api-key"
|
|
)
|
|
|
|
with pytest.raises(ValueError, match="`model` must be an instance of BaseChatModel"):
|
|
LangchainLLM(config)
|
|
|
|
|
|
def test_missing_model():
|
|
"""Test that LangchainLLM raises an error when model is None."""
|
|
config = BaseLlmConfig(
|
|
model=None,
|
|
temperature=0.7,
|
|
max_tokens=100,
|
|
api_key="test-api-key"
|
|
)
|
|
|
|
with pytest.raises(ValueError, match="`model` parameter is required"):
|
|
LangchainLLM(config)
|