Added cloudflare vector-store (#2607)
This commit is contained in:
45
docs/components/vectordbs/dbs/vectorize.mdx
Normal file
45
docs/components/vectordbs/dbs/vectorize.mdx
Normal file
@@ -0,0 +1,45 @@
|
||||
[Cloudflare Vectorize](https://developers.cloudflare.com/vectorize/) is a vector database offering from Cloudflare, allowing you to build AI-powered applications with vector embeddings.
|
||||
|
||||
### Usage
|
||||
|
||||
<CodeGroup>
|
||||
```typescript TypeScript
|
||||
import { Memory } from 'mem0ai/oss';
|
||||
|
||||
const config = {
|
||||
vectorStore: {
|
||||
provider: 'vectorize',
|
||||
config: {
|
||||
indexName: 'my-memory-index',
|
||||
accountId: 'your-cloudflare-account-id',
|
||||
apiKey: 'your-cloudflare-api-key',
|
||||
dimension: 1536, // Optional: defaults to 1536
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const memory = new Memory(config);
|
||||
const messages = [
|
||||
{"role": "user", "content": "I'm looking for a good book to read."},
|
||||
{"role": "assistant", "content": "Sure, what genre are you interested in?"},
|
||||
{"role": "user", "content": "I enjoy fantasy novels with strong world-building."},
|
||||
{"role": "assistant", "content": "Great! I'll keep that in mind for future recommendations."}
|
||||
]
|
||||
await memory.add(messages, { userId: "bob", metadata: { interest: "books" } });
|
||||
```
|
||||
</CodeGroup>
|
||||
|
||||
### Config
|
||||
|
||||
Let's see the available parameters for the `vectorize` config:
|
||||
|
||||
<Tabs>
|
||||
<Tab title="TypeScript">
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `indexName` | The name of the Vectorize index | `None` (Required) |
|
||||
| `accountId` | Your Cloudflare account ID | `None` (Required) |
|
||||
| `apiKey` | Your Cloudflare API token | `None` (Required) |
|
||||
| `dimension` | Dimensions of the embedding model | `1536` |
|
||||
</Tab>
|
||||
</Tabs>
|
||||
@@ -13,7 +13,7 @@ Mem0 includes built-in support for various popular databases. Memory can utilize
|
||||
See the list of supported vector databases below.
|
||||
|
||||
<Note>
|
||||
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis and in-memory vector database.
|
||||
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis,Vectorize and in-memory vector database.
|
||||
</Note>
|
||||
|
||||
<CardGroup cols={3}>
|
||||
|
||||
Reference in New Issue
Block a user