Added cloudflare vector-store (#2607)

This commit is contained in:
Mrinank Bhowmick
2025-06-06 21:35:40 +05:30
committed by GitHub
parent fe3f10adb8
commit e10a509645
6 changed files with 488 additions and 1 deletions

View File

@@ -0,0 +1,45 @@
[Cloudflare Vectorize](https://developers.cloudflare.com/vectorize/) is a vector database offering from Cloudflare, allowing you to build AI-powered applications with vector embeddings.
### Usage
<CodeGroup>
```typescript TypeScript
import { Memory } from 'mem0ai/oss';
const config = {
vectorStore: {
provider: 'vectorize',
config: {
indexName: 'my-memory-index',
accountId: 'your-cloudflare-account-id',
apiKey: 'your-cloudflare-api-key',
dimension: 1536, // Optional: defaults to 1536
},
},
};
const memory = new Memory(config);
const messages = [
{"role": "user", "content": "I'm looking for a good book to read."},
{"role": "assistant", "content": "Sure, what genre are you interested in?"},
{"role": "user", "content": "I enjoy fantasy novels with strong world-building."},
{"role": "assistant", "content": "Great! I'll keep that in mind for future recommendations."}
]
await memory.add(messages, { userId: "bob", metadata: { interest: "books" } });
```
</CodeGroup>
### Config
Let's see the available parameters for the `vectorize` config:
<Tabs>
<Tab title="TypeScript">
| Parameter | Description | Default Value |
| --- | --- | --- |
| `indexName` | The name of the Vectorize index | `None` (Required) |
| `accountId` | Your Cloudflare account ID | `None` (Required) |
| `apiKey` | Your Cloudflare API token | `None` (Required) |
| `dimension` | Dimensions of the embedding model | `1536` |
</Tab>
</Tabs>

View File

@@ -13,7 +13,7 @@ Mem0 includes built-in support for various popular databases. Memory can utilize
See the list of supported vector databases below.
<Note>
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis and in-memory vector database.
The following vector databases are supported in the Python implementation. The TypeScript implementation currently only supports Qdrant, Redis,Vectorize and in-memory vector database.
</Note>
<CardGroup cols={3}>

View File

@@ -21,6 +21,7 @@
"@types/redis": "^4.0.10",
"@types/sqlite3": "^3.1.11",
"@types/uuid": "^9.0.8",
"cloudflare": "^4.2.0",
"dotenv": "^16.4.4",
"groq-sdk": "^0.3.0",
"openai": "^4.28.0",
@@ -31,6 +32,7 @@
"zod": "^3.22.4"
},
"devDependencies": {
"@cloudflare/workers-types": "^4.20250504.0",
"@types/jest": "^29.5.12",
"jest": "^29.7.0",
"rimraf": "^5.0.5",

View File

@@ -22,4 +22,5 @@ export * from "./vector_stores/qdrant";
export * from "./vector_stores/redis";
export * from "./vector_stores/supabase";
export * from "./vector_stores/langchain";
export * from "./vector_stores/vectorize";
export * from "./utils/factory";

View File

@@ -16,6 +16,7 @@ import { Embedder } from "../embeddings/base";
import { LLM } from "../llms/base";
import { VectorStore } from "../vector_stores/base";
import { Qdrant } from "../vector_stores/qdrant";
import { VectorizeDB } from "../vector_stores/vectorize";
import { RedisDB } from "../vector_stores/redis";
import { OllamaLLM } from "../llms/ollama";
import { SupabaseDB } from "../vector_stores/supabase";
@@ -90,6 +91,8 @@ export class VectorStoreFactory {
return new SupabaseDB(config as any);
case "langchain":
return new LangchainVectorStore(config as any);
case "vectorize":
return new VectorizeDB(config as any);
default:
throw new Error(`Unsupported vector store provider: ${provider}`);
}

View File

@@ -0,0 +1,436 @@
import Cloudflare from "cloudflare";
import type { Vectorize, VectorizeVector } from "@cloudflare/workers-types";
import { VectorStore } from "./base";
import { SearchFilters, VectorStoreConfig, VectorStoreResult } from "../types";
interface VectorizeConfig extends VectorStoreConfig {
apiKey?: string;
indexName: string;
accountId: string;
}
interface CloudflareVector {
id: string;
values: number[];
metadata?: Record<string, any>;
}
export class VectorizeDB implements VectorStore {
private client: Cloudflare | null = null;
private dimensions: number;
private indexName: string;
private accountId: string;
constructor(config: VectorizeConfig) {
this.client = new Cloudflare({ apiToken: config.apiKey });
this.dimensions = config.dimension || 1536;
this.indexName = config.indexName;
this.accountId = config.accountId;
this.initialize().catch(console.error);
}
async insert(
vectors: number[][],
ids: string[],
payloads: Record<string, any>[]
): Promise<void> {
try {
const vectorObjects: CloudflareVector[] = vectors.map(
(vector, index) => ({
id: ids[index],
values: vector,
metadata: payloads[index] || {},
})
);
const ndjsonPayload = vectorObjects
.map((v) => JSON.stringify(v))
.join("\n");
const response = await fetch(
`https://api.cloudflare.com/client/v4/accounts/${this.accountId}/vectorize/v2/indexes/${this.indexName}/insert`,
{
method: "POST",
headers: {
"Content-Type": "application/x-ndjson",
Authorization: `Bearer ${this.client?.apiToken}`,
},
body: ndjsonPayload,
}
);
if (!response.ok) {
const errorText = await response.text();
throw new Error(
`Failed to insert vectors: ${response.status} ${errorText}`
);
}
} catch (error) {
console.error("Error inserting vectors:", error);
throw new Error(
`Failed to insert vectors: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async search(
query: number[],
limit: number = 5,
filters?: SearchFilters
): Promise<VectorStoreResult[]> {
try {
const result = await this.client?.vectorize.indexes.query(
this.indexName,
{
account_id: this.accountId,
vector: query,
filter: filters,
returnMetadata: "all",
topK: limit,
}
);
return (
(result?.matches?.map((match) => ({
id: match.id,
payload: match.metadata,
score: match.score,
})) as VectorStoreResult[]) || []
); // Return empty array if result or matches is null/undefined
} catch (error) {
console.error("Error searching vectors:", error);
throw new Error(
`Failed to search vectors: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async get(vectorId: string): Promise<VectorStoreResult | null> {
try {
const result = (await this.client?.vectorize.indexes.getByIds(
this.indexName,
{
account_id: this.accountId,
ids: [vectorId],
}
)) as any;
if (!result?.length) return null;
return {
id: vectorId,
payload: result[0].metadata,
};
} catch (error) {
console.error("Error getting vector:", error);
throw new Error(
`Failed to get vector: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async update(
vectorId: string,
vector: number[],
payload: Record<string, any>
): Promise<void> {
try {
const data: VectorizeVector = {
id: vectorId,
values: vector,
metadata: payload,
};
const response = await fetch(
`https://api.cloudflare.com/client/v4/accounts/${this.accountId}/vectorize/v2/indexes/${this.indexName}/upsert`,
{
method: "POST",
headers: {
"Content-Type": "application/x-ndjson",
Authorization: `Bearer ${this.client?.apiToken}`,
},
body: JSON.stringify(data) + "\n", // ndjson format
}
);
if (!response.ok) {
const errorText = await response.text();
throw new Error(
`Failed to update vector: ${response.status} ${errorText}`
);
}
} catch (error) {
console.error("Error updating vector:", error);
throw new Error(
`Failed to update vector: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async delete(vectorId: string): Promise<void> {
try {
await this.client?.vectorize.indexes.deleteByIds(this.indexName, {
account_id: this.accountId,
ids: [vectorId],
});
} catch (error) {
console.error("Error deleting vector:", error);
throw new Error(
`Failed to delete vector: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async deleteCol(): Promise<void> {
try {
await this.client?.vectorize.indexes.delete(this.indexName, {
account_id: this.accountId,
});
} catch (error) {
console.error("Error deleting collection:", error);
throw new Error(
`Failed to delete collection: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async list(
filters?: SearchFilters,
limit: number = 20
): Promise<[VectorStoreResult[], number]> {
try {
const result = await this.client?.vectorize.indexes.query(
this.indexName,
{
account_id: this.accountId,
vector: Array(this.dimensions).fill(0), // Dummy vector for listing
filter: filters,
topK: limit,
returnMetadata: "all",
}
);
const matches =
(result?.matches?.map((match) => ({
id: match.id,
payload: match.metadata,
score: match.score,
})) as VectorStoreResult[]) || [];
return [matches, matches.length];
} catch (error) {
console.error("Error listing vectors:", error);
throw new Error(
`Failed to list vectors: ${error instanceof Error ? error.message : String(error)}`
);
}
}
private generateUUID(): string {
return "xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx".replace(
/[xy]/g,
function (c) {
const r = (Math.random() * 16) | 0;
const v = c === "x" ? r : (r & 0x3) | 0x8;
return v.toString(16);
}
);
}
async getUserId(): Promise<string> {
try {
let found = false;
for await (const index of this.client!.vectorize.indexes.list({
account_id: this.accountId,
})) {
if (index.name === "memory_migrations") {
found = true;
}
}
if (!found) {
await this.client?.vectorize.indexes.create({
account_id: this.accountId,
name: "memory_migrations",
config: {
dimensions: 1,
metric: "cosine",
},
});
}
// Now try to get the userId
const result: any = await this.client?.vectorize.indexes.query(
"memory_migrations",
{
account_id: this.accountId,
vector: [0],
topK: 1,
returnMetadata: "all",
}
);
if (result.matches.length > 0) {
return result.matches[0].metadata.userId as string;
}
// Generate a random userId if none exists
const randomUserId =
Math.random().toString(36).substring(2, 15) +
Math.random().toString(36).substring(2, 15);
const data: VectorizeVector = {
id: this.generateUUID(),
values: [0],
metadata: { userId: randomUserId },
};
await fetch(
`https://api.cloudflare.com/client/v4/accounts/${this.accountId}/vectorize/v2/indexes/memory_migrations/upsert`,
{
method: "POST",
headers: {
"Content-Type": "application/x-ndjson",
Authorization: `Bearer ${this.client?.apiToken}`,
},
body: JSON.stringify(data) + "\n", // ndjson format
}
);
return randomUserId;
} catch (error) {
console.error("Error getting user ID:", error);
throw new Error(
`Failed to get user ID: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async setUserId(userId: string): Promise<void> {
try {
// Get existing point ID
const result: any = await this.client?.vectorize.indexes.query(
"memory_migrations",
{
account_id: this.accountId,
vector: [0],
topK: 1,
returnMetadata: "all",
}
);
const pointId =
result.matches.length > 0 ? result.matches[0].id : this.generateUUID();
const data: VectorizeVector = {
id: pointId,
values: [0],
metadata: { userId },
};
await fetch(
`https://api.cloudflare.com/client/v4/accounts/${this.accountId}/vectorize/v2/indexes/memory_migrations/upsert`,
{
method: "POST",
headers: {
"Content-Type": "application/x-ndjson",
Authorization: `Bearer ${this.client?.apiToken}`,
},
body: JSON.stringify(data) + "\n", // ndjson format
}
);
} catch (error) {
console.error("Error setting user ID:", error);
throw new Error(
`Failed to set user ID: ${error instanceof Error ? error.message : String(error)}`
);
}
}
async initialize(): Promise<void> {
try {
// Check if the index already exists
let indexFound = false;
for await (const idx of this.client!.vectorize.indexes.list({
account_id: this.accountId,
})) {
if (idx.name === this.indexName) {
indexFound = true;
break;
}
}
// If the index doesn't exist, create it
if (!indexFound) {
try {
await this.client?.vectorize.indexes.create({
account_id: this.accountId,
name: this.indexName,
config: {
dimensions: this.dimensions,
metric: "cosine",
},
});
const properties = ["userId", "agentId", "runId"];
for (const propertyName of properties) {
await this.client?.vectorize.indexes.metadataIndex.create(
this.indexName,
{
account_id: this.accountId,
indexType: "string",
propertyName,
}
);
}
} catch (err: any) {
throw new Error(err);
}
}
// check for metadata index
const metadataIndexes =
await this.client?.vectorize.indexes.metadataIndex.list(
this.indexName,
{
account_id: this.accountId,
}
);
const existingMetadataIndexes = new Set<string>();
for (const metadataIndex of metadataIndexes?.metadataIndexes || []) {
existingMetadataIndexes.add(metadataIndex.propertyName!);
}
const properties = ["userId", "agentId", "runId"];
for (const propertyName of properties) {
if (!existingMetadataIndexes.has(propertyName)) {
await this.client?.vectorize.indexes.metadataIndex.create(
this.indexName,
{
account_id: this.accountId,
indexType: "string",
propertyName,
}
);
}
}
// Create memory_migrations collection if it doesn't exist
let found = false;
for await (const index of this.client!.vectorize.indexes.list({
account_id: this.accountId,
})) {
if (index.name === "memory_migrations") {
found = true;
break;
}
}
if (!found) {
await this.client?.vectorize.indexes.create({
account_id: this.accountId,
name: "memory_migrations",
config: {
dimensions: 1,
metric: "cosine",
},
});
}
} catch (err: any) {
throw new Error(err);
}
}
}