[integration]: Together embedder added (#1995)

This commit is contained in:
Mayank
2024-10-30 22:21:01 +05:30
committed by GitHub
parent efd45c0c4d
commit d928ea4a2b
5 changed files with 72 additions and 1 deletions

View File

@@ -0,0 +1,38 @@
---
title: Together
---
To use Together embedding models, set the `TOGETHER_API_KEY` environment variable. You can obtain the Together API key from the [Together Platform](https://api.together.xyz/settings/api-keys).
### Usage
<Note> The `embedding_model_dims` parameter for `vector_store` should be set to `768` for Together embedder. </Note>
```python
import os
from mem0 import Memory
os.environ["TOGETHER_API_KEY"] = "your_api_key"
config = {
"embedder": {
"provider": "together",
"config": {
"model": "togethercomputer/m2-bert-80M-8k-retrieval"
}
}
}
m = Memory.from_config(config)
m.add("I'm visiting Paris", user_id="john")
```
### Config
Here are the parameters available for configuring Together embedder:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `model` | The name of the embedding model to use | `togethercomputer/m2-bert-80M-8k-retrieval` |
| `embedding_dims` | Dimensions of the embedding model | `768` |
| `api_key` | The Together API key | `None` |

View File

@@ -15,6 +15,7 @@ See the list of supported embedders below.
<Card title="Hugging Face" href="/components/embedders/models/huggingface"></Card>
<Card title="Gemini" href="/components/embedders/models/gemini"></Card>
<Card title="Vertex AI" href="/components/embedders/models/vertexai"></Card>
<Card title="Together" href="/components/embedders/models/together"></Card>
</CardGroup>
## Usage

View File

@@ -13,7 +13,7 @@ class EmbedderConfig(BaseModel):
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider in ["openai", "ollama", "huggingface", "azure_openai", "gemini", "vertexai"]:
if provider in ["openai", "ollama", "huggingface", "azure_openai", "gemini", "vertexai", "together"]:
return v
else:
raise ValueError(f"Unsupported embedding provider: {provider}")

View File

@@ -0,0 +1,31 @@
import os
from typing import Optional
from together import Together
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class TogetherEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "togethercomputer/m2-bert-80M-8k-retrieval"
api_key = self.config.api_key or os.getenv("TOGETHER_API_KEY")
# TODO: check if this is correct
self.config.embedding_dims = self.config.embedding_dims or 768
self.client = Together(api_key=api_key)
def embed(self, text):
"""
Get the embedding for the given text using OpenAI.
Args:
text (str): The text to embed.
Returns:
list: The embedding vector.
"""
return self.client.embeddings.create(model=self.config.model, input=text).data[0].embedding

View File

@@ -44,6 +44,7 @@ class EmbedderFactory:
"azure_openai": "mem0.embeddings.azure_openai.AzureOpenAIEmbedding",
"gemini": "mem0.embeddings.gemini.GoogleGenAIEmbedding",
"vertexai": "mem0.embeddings.vertexai.VertexAIEmbedding",
"together": "mem0.embeddings.together.TogetherEmbedding",
}
@classmethod