[Feature] Batch uploading in chromadb (#814)

This commit is contained in:
Rupesh Bansal
2023-10-18 10:52:29 +05:30
committed by GitHub
parent bb490df9a6
commit d8a7d71344
2 changed files with 63 additions and 9 deletions

View File

@@ -25,6 +25,8 @@ except RuntimeError:
class ChromaDB(BaseVectorDB):
"""Vector database using ChromaDB."""
BATCH_SIZE = 100
def __init__(self, config: Optional[ChromaDbConfig] = None):
"""Initialize a new ChromaDB instance
@@ -123,10 +125,6 @@ class ChromaDB(BaseVectorDB):
args["limit"] = limit
return self.collection.get(**args)
def get_advanced(self, where):
where_clause = self._generate_where_clause(where)
return self.collection.get(where=where_clause, limit=1)
def add(
self,
embeddings: List[List[float]],
@@ -149,10 +147,31 @@ class ChromaDB(BaseVectorDB):
:param skip_embedding: Optional. If True, then the embeddings are assumed to be already generated.
:type skip_embedding: bool
"""
if skip_embedding:
self.collection.add(embeddings=embeddings, documents=documents, metadatas=metadatas, ids=ids)
else:
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
size = len(documents)
if skip_embedding and (embeddings is None or len(embeddings) != len(documents)):
raise ValueError("Cannot add documents to chromadb with inconsistent embeddings")
if len(documents) != size or len(metadatas) != size or len(ids) != size:
raise ValueError(
"Cannot add documents to chromadb with inconsistent sizes. Documents size: {}, Metadata size: {},"
" Ids size: {}".format(len(documents), len(metadatas), len(ids))
)
for i in range(0, len(documents), self.BATCH_SIZE):
print("Inserting batches from {} to {} in chromadb".format(i, min(len(documents), i + self.BATCH_SIZE)))
if skip_embedding:
self.collection.add(
embeddings=embeddings[i : i + self.BATCH_SIZE],
documents=documents[i : i + self.BATCH_SIZE],
metadatas=metadatas[i : i + self.BATCH_SIZE],
ids=ids[i : i + self.BATCH_SIZE],
)
else:
self.collection.add(
documents=documents[i : i + self.BATCH_SIZE],
metadatas=metadatas[i : i + self.BATCH_SIZE],
ids=ids[i : i + self.BATCH_SIZE],
)
def _format_result(self, results: QueryResult) -> list[tuple[Document, float]]:
"""
@@ -208,7 +227,8 @@ class ChromaDB(BaseVectorDB):
except InvalidDimensionException as e:
raise InvalidDimensionException(
e.message()
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the"
" embeddings, is used to retrieve an embedding from the database."
) from None
results_formatted = self._format_result(result)
contents = [result[0].page_content for result in results_formatted]

View File

@@ -228,6 +228,40 @@ class TestChromaDbCollection(unittest.TestCase):
expected_value = ["document"]
self.assertEqual(data, expected_value)
def test_add_with_invalid_inputs(self):
"""
Test add fails with invalid inputs
"""
# Start with a clean app
self.app_with_settings.reset()
# app = App(config=AppConfig(collect_metrics=False), db=db)
# Collection should be empty when created
self.assertEqual(self.app_with_settings.db.count(), 0)
with self.assertRaises(ValueError):
self.app_with_settings.db.add(
embeddings=[[0, 0, 0]],
documents=["document", "document2"],
metadatas=[{"value": "somevalue"}],
ids=["id"],
skip_embedding=True,
)
# After adding, should contain no item
self.assertEqual(self.app_with_settings.db.count(), 0)
with self.assertRaises(ValueError):
self.app_with_settings.db.add(
embeddings=None,
documents=["document", "document2"],
metadatas=[{"value": "somevalue"}],
ids=["id"],
skip_embedding=True,
)
# After adding, should contain no item
self.assertEqual(self.app_with_settings.db.count(), 0)
def test_collections_are_persistent(self):
"""
Test that a collection can be picked up later.