Formatting (#2750)

This commit is contained in:
Dev Khant
2025-05-22 01:17:29 +05:30
committed by GitHub
parent dff91154a7
commit d85fcda037
71 changed files with 1391 additions and 1823 deletions

View File

@@ -28,14 +28,12 @@ def get_answer(question, speaker_1_user_id, speaker_1_memories, speaker_2_user_i
speaker_1_user_id=speaker_1_user_id,
speaker_1_memories=speaker_1_memories,
speaker_2_user_id=speaker_2_user_id,
speaker_2_memories=speaker_2_memories
speaker_2_memories=speaker_2_memories,
)
t1 = time.time()
response = client.chat.completions.create(
model=os.getenv("MODEL"),
messages=[{"role": "system", "content": prompt}],
temperature=0.0
model=os.getenv("MODEL"), messages=[{"role": "system", "content": prompt}], temperature=0.0
)
t2 = time.time()
return response.choices[0].message.content, t2 - t1
@@ -59,7 +57,9 @@ def prompt(state):
class LangMem:
def __init__(self,):
def __init__(
self,
):
self.store = InMemoryStore(
index={
"dims": 1536,
@@ -80,18 +80,12 @@ class LangMem:
)
def add_memory(self, message, config):
return self.agent.invoke(
{"messages": [{"role": "user", "content": message}]},
config=config
)
return self.agent.invoke({"messages": [{"role": "user", "content": message}]}, config=config)
def search_memory(self, query, config):
try:
t1 = time.time()
response = self.agent.invoke(
{"messages": [{"role": "user", "content": query}]},
config=config
)
response = self.agent.invoke({"messages": [{"role": "user", "content": query}]}, config=config)
t2 = time.time()
return response["messages"][-1].content, t2 - t1
except Exception as e:
@@ -102,7 +96,7 @@ class LangMem:
class LangMemManager:
def __init__(self, dataset_path):
self.dataset_path = dataset_path
with open(self.dataset_path, 'r') as f:
with open(self.dataset_path, "r") as f:
self.data = json.load(f)
def process_all_conversations(self, output_file_path):
@@ -123,7 +117,7 @@ class LangMemManager:
# Identify speakers
for conv in chat_history:
speakers.add(conv['speaker'])
speakers.add(conv["speaker"])
if len(speakers) != 2:
raise ValueError(f"Expected 2 speakers, got {len(speakers)}")
@@ -134,50 +128,52 @@ class LangMemManager:
# Add memories for each message
for conv in tqdm(chat_history, desc=f"Processing messages {key}", leave=False):
message = f"{conv['timestamp']} | {conv['speaker']}: {conv['text']}"
if conv['speaker'] == speaker1:
if conv["speaker"] == speaker1:
agent1.add_memory(message, config)
elif conv['speaker'] == speaker2:
elif conv["speaker"] == speaker2:
agent2.add_memory(message, config)
else:
raise ValueError(f"Expected speaker1 or speaker2, got {conv['speaker']}")
# Process questions
for q in tqdm(questions, desc=f"Processing questions {key}", leave=False):
category = q['category']
category = q["category"]
if int(category) == 5:
continue
answer = q['answer']
question = q['question']
answer = q["answer"]
question = q["question"]
response1, speaker1_memory_time = agent1.search_memory(question, config)
response2, speaker2_memory_time = agent2.search_memory(question, config)
generated_answer, response_time = get_answer(
question, speaker1, response1, speaker2, response2
)
generated_answer, response_time = get_answer(question, speaker1, response1, speaker2, response2)
result[key].append({
"question": question,
"answer": answer,
"response1": response1,
"response2": response2,
"category": category,
"speaker1_memory_time": speaker1_memory_time,
"speaker2_memory_time": speaker2_memory_time,
"response_time": response_time,
'response': generated_answer
})
result[key].append(
{
"question": question,
"answer": answer,
"response1": response1,
"response2": response2,
"category": category,
"speaker1_memory_time": speaker1_memory_time,
"speaker2_memory_time": speaker2_memory_time,
"response_time": response_time,
"response": generated_answer,
}
)
return result
# Use multiprocessing to process conversations in parallel
with mp.Pool(processes=10) as pool:
results = list(tqdm(
pool.imap(process_conversation, list(self.data.items())),
total=len(self.data),
desc="Processing conversations"
))
results = list(
tqdm(
pool.imap(process_conversation, list(self.data.items())),
total=len(self.data),
desc="Processing conversations",
)
)
# Combine results from all workers
for result in results:
@@ -185,5 +181,5 @@ class LangMemManager:
OUTPUT[key].extend(items)
# Save final results
with open(output_file_path, 'w') as f:
with open(output_file_path, "w") as f:
json.dump(OUTPUT, f, indent=4)

View File

@@ -13,7 +13,7 @@ load_dotenv()
# Update custom instructions
custom_instructions ="""
custom_instructions = """
Generate personal memories that follow these guidelines:
1. Each memory should be self-contained with complete context, including:
@@ -47,7 +47,7 @@ class MemoryADD:
self.mem0_client = MemoryClient(
api_key=os.getenv("MEM0_API_KEY"),
org_id=os.getenv("MEM0_ORGANIZATION_ID"),
project_id=os.getenv("MEM0_PROJECT_ID")
project_id=os.getenv("MEM0_PROJECT_ID"),
)
self.mem0_client.update_project(custom_instructions=custom_instructions)
@@ -59,15 +59,16 @@ class MemoryADD:
self.load_data()
def load_data(self):
with open(self.data_path, 'r') as f:
with open(self.data_path, "r") as f:
self.data = json.load(f)
return self.data
def add_memory(self, user_id, message, metadata, retries=3):
for attempt in range(retries):
try:
_ = self.mem0_client.add(message, user_id=user_id, version="v2",
metadata=metadata, enable_graph=self.is_graph)
_ = self.mem0_client.add(
message, user_id=user_id, version="v2", metadata=metadata, enable_graph=self.is_graph
)
return
except Exception as e:
if attempt < retries - 1:
@@ -78,13 +79,13 @@ class MemoryADD:
def add_memories_for_speaker(self, speaker, messages, timestamp, desc):
for i in tqdm(range(0, len(messages), self.batch_size), desc=desc):
batch_messages = messages[i:i+self.batch_size]
batch_messages = messages[i : i + self.batch_size]
self.add_memory(speaker, batch_messages, metadata={"timestamp": timestamp})
def process_conversation(self, item, idx):
conversation = item['conversation']
speaker_a = conversation['speaker_a']
speaker_b = conversation['speaker_b']
conversation = item["conversation"]
speaker_a = conversation["speaker_a"]
speaker_b = conversation["speaker_b"]
speaker_a_user_id = f"{speaker_a}_{idx}"
speaker_b_user_id = f"{speaker_b}_{idx}"
@@ -94,7 +95,7 @@ class MemoryADD:
self.mem0_client.delete_all(user_id=speaker_b_user_id)
for key in conversation.keys():
if key in ['speaker_a', 'speaker_b'] or "date" in key or "timestamp" in key:
if key in ["speaker_a", "speaker_b"] or "date" in key or "timestamp" in key:
continue
date_time_key = key + "_date_time"
@@ -104,10 +105,10 @@ class MemoryADD:
messages = []
messages_reverse = []
for chat in chats:
if chat['speaker'] == speaker_a:
if chat["speaker"] == speaker_a:
messages.append({"role": "user", "content": f"{speaker_a}: {chat['text']}"})
messages_reverse.append({"role": "assistant", "content": f"{speaker_a}: {chat['text']}"})
elif chat['speaker'] == speaker_b:
elif chat["speaker"] == speaker_b:
messages.append({"role": "assistant", "content": f"{speaker_b}: {chat['text']}"})
messages_reverse.append({"role": "user", "content": f"{speaker_b}: {chat['text']}"})
else:
@@ -116,11 +117,11 @@ class MemoryADD:
# add memories for the two users on different threads
thread_a = threading.Thread(
target=self.add_memories_for_speaker,
args=(speaker_a_user_id, messages, timestamp, "Adding Memories for Speaker A")
args=(speaker_a_user_id, messages, timestamp, "Adding Memories for Speaker A"),
)
thread_b = threading.Thread(
target=self.add_memories_for_speaker,
args=(speaker_b_user_id, messages_reverse, timestamp, "Adding Memories for Speaker B")
args=(speaker_b_user_id, messages_reverse, timestamp, "Adding Memories for Speaker B"),
)
thread_a.start()
@@ -134,10 +135,7 @@ class MemoryADD:
if not self.data:
raise ValueError("No data loaded. Please set data_path and call load_data() first.")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [
executor.submit(self.process_conversation, item, idx)
for idx, item in enumerate(self.data)
]
futures = [executor.submit(self.process_conversation, item, idx) for idx, item in enumerate(self.data)]
for future in futures:
future.result()
future.result()

View File

@@ -16,12 +16,11 @@ load_dotenv()
class MemorySearch:
def __init__(self, output_path='results.json', top_k=10, filter_memories=False, is_graph=False):
def __init__(self, output_path="results.json", top_k=10, filter_memories=False, is_graph=False):
self.mem0_client = MemoryClient(
api_key=os.getenv("MEM0_API_KEY"),
org_id=os.getenv("MEM0_ORGANIZATION_ID"),
project_id=os.getenv("MEM0_PROJECT_ID")
project_id=os.getenv("MEM0_PROJECT_ID"),
)
self.top_k = top_k
self.openai_client = OpenAI()
@@ -42,11 +41,18 @@ class MemorySearch:
try:
if self.is_graph:
print("Searching with graph")
memories = self.mem0_client.search(query, user_id=user_id, top_k=self.top_k,
filter_memories=self.filter_memories, enable_graph=True, output_format='v1.1')
memories = self.mem0_client.search(
query,
user_id=user_id,
top_k=self.top_k,
filter_memories=self.filter_memories,
enable_graph=True,
output_format="v1.1",
)
else:
memories = self.mem0_client.search(query, user_id=user_id, top_k=self.top_k,
filter_memories=self.filter_memories)
memories = self.mem0_client.search(
query, user_id=user_id, top_k=self.top_k, filter_memories=self.filter_memories
)
break
except Exception as e:
print("Retrying...")
@@ -57,64 +63,86 @@ class MemorySearch:
end_time = time.time()
if not self.is_graph:
semantic_memories = [{'memory': memory['memory'],
'timestamp': memory['metadata']['timestamp'],
'score': round(memory['score'], 2)}
for memory in memories]
semantic_memories = [
{
"memory": memory["memory"],
"timestamp": memory["metadata"]["timestamp"],
"score": round(memory["score"], 2),
}
for memory in memories
]
graph_memories = None
else:
semantic_memories = [{'memory': memory['memory'],
'timestamp': memory['metadata']['timestamp'],
'score': round(memory['score'], 2)} for memory in memories['results']]
graph_memories = [{"source": relation['source'], "relationship": relation['relationship'], "target": relation['target']} for relation in memories['relations']]
semantic_memories = [
{
"memory": memory["memory"],
"timestamp": memory["metadata"]["timestamp"],
"score": round(memory["score"], 2),
}
for memory in memories["results"]
]
graph_memories = [
{"source": relation["source"], "relationship": relation["relationship"], "target": relation["target"]}
for relation in memories["relations"]
]
return semantic_memories, graph_memories, end_time - start_time
def answer_question(self, speaker_1_user_id, speaker_2_user_id, question, answer, category):
speaker_1_memories, speaker_1_graph_memories, speaker_1_memory_time = self.search_memory(speaker_1_user_id, question)
speaker_2_memories, speaker_2_graph_memories, speaker_2_memory_time = self.search_memory(speaker_2_user_id, question)
speaker_1_memories, speaker_1_graph_memories, speaker_1_memory_time = self.search_memory(
speaker_1_user_id, question
)
speaker_2_memories, speaker_2_graph_memories, speaker_2_memory_time = self.search_memory(
speaker_2_user_id, question
)
search_1_memory = [f"{item['timestamp']}: {item['memory']}"
for item in speaker_1_memories]
search_2_memory = [f"{item['timestamp']}: {item['memory']}"
for item in speaker_2_memories]
search_1_memory = [f"{item['timestamp']}: {item['memory']}" for item in speaker_1_memories]
search_2_memory = [f"{item['timestamp']}: {item['memory']}" for item in speaker_2_memories]
template = Template(self.ANSWER_PROMPT)
answer_prompt = template.render(
speaker_1_user_id=speaker_1_user_id.split('_')[0],
speaker_2_user_id=speaker_2_user_id.split('_')[0],
speaker_1_user_id=speaker_1_user_id.split("_")[0],
speaker_2_user_id=speaker_2_user_id.split("_")[0],
speaker_1_memories=json.dumps(search_1_memory, indent=4),
speaker_2_memories=json.dumps(search_2_memory, indent=4),
speaker_1_graph_memories=json.dumps(speaker_1_graph_memories, indent=4),
speaker_2_graph_memories=json.dumps(speaker_2_graph_memories, indent=4),
question=question
question=question,
)
t1 = time.time()
response = self.openai_client.chat.completions.create(
model=os.getenv("MODEL"),
messages=[
{"role": "system", "content": answer_prompt}
],
temperature=0.0
model=os.getenv("MODEL"), messages=[{"role": "system", "content": answer_prompt}], temperature=0.0
)
t2 = time.time()
response_time = t2 - t1
return response.choices[0].message.content, speaker_1_memories, speaker_2_memories, speaker_1_memory_time, speaker_2_memory_time, speaker_1_graph_memories, speaker_2_graph_memories, response_time
return (
response.choices[0].message.content,
speaker_1_memories,
speaker_2_memories,
speaker_1_memory_time,
speaker_2_memory_time,
speaker_1_graph_memories,
speaker_2_graph_memories,
response_time,
)
def process_question(self, val, speaker_a_user_id, speaker_b_user_id):
question = val.get('question', '')
answer = val.get('answer', '')
category = val.get('category', -1)
evidence = val.get('evidence', [])
adversarial_answer = val.get('adversarial_answer', '')
question = val.get("question", "")
answer = val.get("answer", "")
category = val.get("category", -1)
evidence = val.get("evidence", [])
adversarial_answer = val.get("adversarial_answer", "")
response, speaker_1_memories, speaker_2_memories, speaker_1_memory_time, speaker_2_memory_time, speaker_1_graph_memories, speaker_2_graph_memories, response_time = self.answer_question(
speaker_a_user_id,
speaker_b_user_id,
question,
answer,
category
)
(
response,
speaker_1_memories,
speaker_2_memories,
speaker_1_memory_time,
speaker_2_memory_time,
speaker_1_graph_memories,
speaker_2_graph_memories,
response_time,
) = self.answer_question(speaker_a_user_id, speaker_b_user_id, question, answer, category)
result = {
"question": question,
@@ -125,67 +153,63 @@ class MemorySearch:
"adversarial_answer": adversarial_answer,
"speaker_1_memories": speaker_1_memories,
"speaker_2_memories": speaker_2_memories,
'num_speaker_1_memories': len(speaker_1_memories),
'num_speaker_2_memories': len(speaker_2_memories),
'speaker_1_memory_time': speaker_1_memory_time,
'speaker_2_memory_time': speaker_2_memory_time,
"num_speaker_1_memories": len(speaker_1_memories),
"num_speaker_2_memories": len(speaker_2_memories),
"speaker_1_memory_time": speaker_1_memory_time,
"speaker_2_memory_time": speaker_2_memory_time,
"speaker_1_graph_memories": speaker_1_graph_memories,
"speaker_2_graph_memories": speaker_2_graph_memories,
"response_time": response_time
"response_time": response_time,
}
# Save results after each question is processed
with open(self.output_path, 'w') as f:
with open(self.output_path, "w") as f:
json.dump(self.results, f, indent=4)
return result
def process_data_file(self, file_path):
with open(file_path, 'r') as f:
with open(file_path, "r") as f:
data = json.load(f)
for idx, item in tqdm(enumerate(data), total=len(data), desc="Processing conversations"):
qa = item['qa']
conversation = item['conversation']
speaker_a = conversation['speaker_a']
speaker_b = conversation['speaker_b']
qa = item["qa"]
conversation = item["conversation"]
speaker_a = conversation["speaker_a"]
speaker_b = conversation["speaker_b"]
speaker_a_user_id = f"{speaker_a}_{idx}"
speaker_b_user_id = f"{speaker_b}_{idx}"
for question_item in tqdm(qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False):
result = self.process_question(
question_item,
speaker_a_user_id,
speaker_b_user_id
)
for question_item in tqdm(
qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False
):
result = self.process_question(question_item, speaker_a_user_id, speaker_b_user_id)
self.results[idx].append(result)
# Save results after each question is processed
with open(self.output_path, 'w') as f:
with open(self.output_path, "w") as f:
json.dump(self.results, f, indent=4)
# Final save at the end
with open(self.output_path, 'w') as f:
with open(self.output_path, "w") as f:
json.dump(self.results, f, indent=4)
def process_questions_parallel(self, qa_list, speaker_a_user_id, speaker_b_user_id, max_workers=1):
def process_single_question(val):
result = self.process_question(val, speaker_a_user_id, speaker_b_user_id)
# Save results after each question is processed
with open(self.output_path, 'w') as f:
with open(self.output_path, "w") as f:
json.dump(self.results, f, indent=4)
return result
with ThreadPoolExecutor(max_workers=max_workers) as executor:
results = list(tqdm(
executor.map(process_single_question, qa_list),
total=len(qa_list),
desc="Answering Questions"
))
results = list(
tqdm(executor.map(process_single_question, qa_list), total=len(qa_list), desc="Answering Questions")
)
# Final save at the end
with open(self.output_path, 'w') as f:
with open(self.output_path, "w") as f:
json.dump(self.results, f, indent=4)
return results

View File

@@ -59,23 +59,19 @@ class OpenAIPredict:
self.results = defaultdict(list)
def search_memory(self, idx):
with open(f'memories/{idx}.txt', 'r') as file:
with open(f"memories/{idx}.txt", "r") as file:
memories = file.read()
return memories, 0
def process_question(self, val, idx):
question = val.get('question', '')
answer = val.get('answer', '')
category = val.get('category', -1)
evidence = val.get('evidence', [])
adversarial_answer = val.get('adversarial_answer', '')
question = val.get("question", "")
answer = val.get("answer", "")
category = val.get("category", -1)
evidence = val.get("evidence", [])
adversarial_answer = val.get("adversarial_answer", "")
response, search_memory_time, response_time, context = self.answer_question(
idx,
question
)
response, search_memory_time, response_time, context = self.answer_question(idx, question)
result = {
"question": question,
@@ -86,7 +82,7 @@ class OpenAIPredict:
"adversarial_answer": adversarial_answer,
"search_memory_time": search_memory_time,
"response_time": response_time,
"context": context
"context": context,
}
return result
@@ -95,43 +91,35 @@ class OpenAIPredict:
memories, search_memory_time = self.search_memory(idx)
template = Template(ANSWER_PROMPT)
answer_prompt = template.render(
memories=memories,
question=question
)
answer_prompt = template.render(memories=memories, question=question)
t1 = time.time()
response = self.openai_client.chat.completions.create(
model=os.getenv("MODEL"),
messages=[
{"role": "system", "content": answer_prompt}
],
temperature=0.0
model=os.getenv("MODEL"), messages=[{"role": "system", "content": answer_prompt}], temperature=0.0
)
t2 = time.time()
response_time = t2 - t1
return response.choices[0].message.content, search_memory_time, response_time, memories
def process_data_file(self, file_path, output_file_path):
with open(file_path, 'r') as f:
with open(file_path, "r") as f:
data = json.load(f)
for idx, item in tqdm(enumerate(data), total=len(data), desc="Processing conversations"):
qa = item['qa']
qa = item["qa"]
for question_item in tqdm(qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False):
result = self.process_question(
question_item,
idx
)
for question_item in tqdm(
qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False
):
result = self.process_question(question_item, idx)
self.results[idx].append(result)
# Save results after each question is processed
with open(output_file_path, 'w') as f:
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)
# Final save at the end
with open(output_file_path, 'w') as f:
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)
@@ -141,4 +129,3 @@ if __name__ == "__main__":
args = parser.parse_args()
openai_predict = OpenAIPredict()
openai_predict.process_data_file("../../dataset/locomo10.json", args.output_file_path)

View File

@@ -33,10 +33,7 @@ class RAGManager:
def generate_response(self, question, context):
template = Template(PROMPT)
prompt = template.render(
CONTEXT=context,
QUESTION=question
)
prompt = template.render(CONTEXT=context, QUESTION=question)
max_retries = 3
retries = 0
@@ -47,19 +44,21 @@ class RAGManager:
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system",
"content": "You are a helpful assistant that can answer "
"questions based on the provided context."
"If the question involves timing, use the conversation date for reference."
"Provide the shortest possible answer."
"Use words directly from the conversation when possible."
"Avoid using subjects in your answer."},
{"role": "user", "content": prompt}
{
"role": "system",
"content": "You are a helpful assistant that can answer "
"questions based on the provided context."
"If the question involves timing, use the conversation date for reference."
"Provide the shortest possible answer."
"Use words directly from the conversation when possible."
"Avoid using subjects in your answer.",
},
{"role": "user", "content": prompt},
],
temperature=0
temperature=0,
)
t2 = time.time()
return response.choices[0].message.content.strip(), t2-t1
return response.choices[0].message.content.strip(), t2 - t1
except Exception as e:
retries += 1
if retries > max_retries:
@@ -69,21 +68,16 @@ class RAGManager:
def clean_chat_history(self, chat_history):
cleaned_chat_history = ""
for c in chat_history:
cleaned_chat_history += (f"{c['timestamp']} | {c['speaker']}: "
f"{c['text']}\n")
cleaned_chat_history += f"{c['timestamp']} | {c['speaker']}: " f"{c['text']}\n"
return cleaned_chat_history
def calculate_embedding(self, document):
response = self.client.embeddings.create(
model=os.getenv("EMBEDDING_MODEL"),
input=document
)
response = self.client.embeddings.create(model=os.getenv("EMBEDDING_MODEL"), input=document)
return response.data[0].embedding
def calculate_similarity(self, embedding1, embedding2):
return np.dot(embedding1, embedding2) / (
np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
return np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
def search(self, query, chunks, embeddings, k=1):
"""
@@ -101,10 +95,7 @@ class RAGManager:
"""
t1 = time.time()
query_embedding = self.calculate_embedding(query)
similarities = [
self.calculate_similarity(query_embedding, embedding)
for embedding in embeddings
]
similarities = [self.calculate_similarity(query_embedding, embedding) for embedding in embeddings]
# Get indices of top-k most similar chunks
if k == 1:
@@ -118,7 +109,7 @@ class RAGManager:
combined_chunks = "\n<->\n".join([chunks[i] for i in top_indices])
t2 = time.time()
return combined_chunks, t2-t1
return combined_chunks, t2 - t1
def create_chunks(self, chat_history, chunk_size=500):
"""
@@ -139,7 +130,7 @@ class RAGManager:
# Split into chunks based on token count
for i in range(0, len(tokens), chunk_size):
chunk_tokens = tokens[i:i+chunk_size]
chunk_tokens = tokens[i : i + chunk_size]
chunk = encoding.decode(chunk_tokens)
chunks.append(chunk)
@@ -159,13 +150,9 @@ class RAGManager:
chat_history = value["conversation"]
questions = value["question"]
chunks, embeddings = self.create_chunks(
chat_history, self.chunk_size
)
chunks, embeddings = self.create_chunks(chat_history, self.chunk_size)
for item in tqdm(
questions, desc="Answering questions", leave=False
):
for item in tqdm(questions, desc="Answering questions", leave=False):
question = item["question"]
answer = item.get("answer", "")
category = item["category"]
@@ -174,22 +161,20 @@ class RAGManager:
context = chunks[0]
search_time = 0
else:
context, search_time = self.search(
question, chunks, embeddings, k=self.k
)
response, response_time = self.generate_response(
question, context
)
context, search_time = self.search(question, chunks, embeddings, k=self.k)
response, response_time = self.generate_response(question, context)
FINAL_RESULTS[key].append({
"question": question,
"answer": answer,
"category": category,
"context": context,
"response": response,
"search_time": search_time,
"response_time": response_time,
})
FINAL_RESULTS[key].append(
{
"question": question,
"answer": answer,
"category": category,
"context": context,
"response": response,
"search_time": search_time,
"response_time": response_time,
}
)
with open(output_file_path, "w+") as f:
json.dump(FINAL_RESULTS, f, indent=4)

View File

@@ -1,12 +1,3 @@
TECHNIQUES = [
"mem0",
"rag",
"langmem",
"zep",
"openai"
]
TECHNIQUES = ["mem0", "rag", "langmem", "zep", "openai"]
METHODS = [
"add",
"search"
]
METHODS = ["add", "search"]

View File

@@ -19,12 +19,12 @@ class ZepAdd:
self.load_data()
def load_data(self):
with open(self.data_path, 'r') as f:
with open(self.data_path, "r") as f:
self.data = json.load(f)
return self.data
def process_conversation(self, run_id, item, idx):
conversation = item['conversation']
conversation = item["conversation"]
user_id = f"run_id_{run_id}_experiment_user_{idx}"
session_id = f"run_id_{run_id}_experiment_session_{idx}"
@@ -41,7 +41,7 @@ class ZepAdd:
print("Starting to add memories... for user", user_id)
for key in tqdm(conversation.keys(), desc=f"Processing user {user_id}"):
if key in ['speaker_a', 'speaker_b'] or "date" in key:
if key in ["speaker_a", "speaker_b"] or "date" in key:
continue
date_time_key = key + "_date_time"
@@ -51,11 +51,13 @@ class ZepAdd:
for chat in tqdm(chats, desc=f"Adding chats for {key}", leave=False):
self.zep_client.memory.add(
session_id=session_id,
messages=[Message(
role=chat['speaker'],
role_type="user",
content=f"{timestamp}: {chat['text']}",
)]
messages=[
Message(
role=chat["speaker"],
role_type="user",
content=f"{timestamp}: {chat['text']}",
)
],
)
def process_all_conversations(self, run_id):
@@ -71,4 +73,4 @@ if __name__ == "__main__":
parser.add_argument("--run_id", type=str, required=True)
args = parser.parse_args()
zep_add = ZepAdd(data_path="../../dataset/locomo10.json")
zep_add.process_all_conversations(args.run_id)
zep_add.process_all_conversations(args.run_id)

View File

@@ -42,9 +42,9 @@ class ZepSearch:
return f"{edge.valid_at if edge.valid_at else 'date unknown'} - {(edge.invalid_at if edge.invalid_at else 'present')}"
def compose_search_context(self, edges: list[EntityEdge], nodes: list[EntityNode]) -> str:
facts = [f' - {edge.fact} ({self.format_edge_date_range(edge)})' for edge in edges]
entities = [f' - {node.name}: {node.summary}' for node in nodes]
return TEMPLATE.format(facts='\n'.join(facts), entities='\n'.join(entities))
facts = [f" - {edge.fact} ({self.format_edge_date_range(edge)})" for edge in edges]
entities = [f" - {node.name}: {node.summary}" for node in nodes]
return TEMPLATE.format(facts="\n".join(facts), entities="\n".join(entities))
def search_memory(self, run_id, idx, query, max_retries=3, retry_delay=1):
start_time = time.time()
@@ -52,8 +52,14 @@ class ZepSearch:
while retries < max_retries:
try:
user_id = f"run_id_{run_id}_experiment_user_{idx}"
edges_results = (self.zep_client.graph.search(user_id=user_id, reranker='cross_encoder', query=query, scope='edges', limit=20)).edges
node_results = (self.zep_client.graph.search(user_id=user_id, reranker='rrf', query=query, scope='nodes', limit=20)).nodes
edges_results = (
self.zep_client.graph.search(
user_id=user_id, reranker="cross_encoder", query=query, scope="edges", limit=20
)
).edges
node_results = (
self.zep_client.graph.search(user_id=user_id, reranker="rrf", query=query, scope="nodes", limit=20)
).nodes
context = self.compose_search_context(edges_results, node_results)
break
except Exception as e:
@@ -68,17 +74,13 @@ class ZepSearch:
return context, end_time - start_time
def process_question(self, run_id, val, idx):
question = val.get('question', '')
answer = val.get('answer', '')
category = val.get('category', -1)
evidence = val.get('evidence', [])
adversarial_answer = val.get('adversarial_answer', '')
question = val.get("question", "")
answer = val.get("answer", "")
category = val.get("category", -1)
evidence = val.get("evidence", [])
adversarial_answer = val.get("adversarial_answer", "")
response, search_memory_time, response_time, context = self.answer_question(
run_id,
idx,
question
)
response, search_memory_time, response_time, context = self.answer_question(run_id, idx, question)
result = {
"question": question,
@@ -89,7 +91,7 @@ class ZepSearch:
"adversarial_answer": adversarial_answer,
"search_memory_time": search_memory_time,
"response_time": response_time,
"context": context
"context": context,
}
return result
@@ -98,44 +100,35 @@ class ZepSearch:
context, search_memory_time = self.search_memory(run_id, idx, question)
template = Template(ANSWER_PROMPT_ZEP)
answer_prompt = template.render(
memories=context,
question=question
)
answer_prompt = template.render(memories=context, question=question)
t1 = time.time()
response = self.openai_client.chat.completions.create(
model=os.getenv("MODEL"),
messages=[
{"role": "system", "content": answer_prompt}
],
temperature=0.0
model=os.getenv("MODEL"), messages=[{"role": "system", "content": answer_prompt}], temperature=0.0
)
t2 = time.time()
response_time = t2 - t1
return response.choices[0].message.content, search_memory_time, response_time, context
def process_data_file(self, file_path, run_id, output_file_path):
with open(file_path, 'r') as f:
with open(file_path, "r") as f:
data = json.load(f)
for idx, item in tqdm(enumerate(data), total=len(data), desc="Processing conversations"):
qa = item['qa']
qa = item["qa"]
for question_item in tqdm(qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False):
result = self.process_question(
run_id,
question_item,
idx
)
for question_item in tqdm(
qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False
):
result = self.process_question(run_id, question_item, idx)
self.results[idx].append(result)
# Save results after each question is processed
with open(output_file_path, 'w') as f:
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)
# Final save at the end
with open(output_file_path, 'w') as f:
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)