Files
t6_mem0/evaluation/src/zep/search.py
2025-05-22 01:17:29 +05:30

141 lines
5.1 KiB
Python

import argparse
import json
import os
import time
from collections import defaultdict
from dotenv import load_dotenv
from jinja2 import Template
from openai import OpenAI
from prompts import ANSWER_PROMPT_ZEP
from tqdm import tqdm
from zep_cloud import EntityEdge, EntityNode
from zep_cloud.client import Zep
load_dotenv()
TEMPLATE = """
FACTS and ENTITIES represent relevant context to the current conversation.
# These are the most relevant facts and their valid date ranges
# format: FACT (Date range: from - to)
{facts}
# These are the most relevant entities
# ENTITY_NAME: entity summary
{entities}
"""
class ZepSearch:
def __init__(self):
self.zep_client = Zep(api_key=os.getenv("ZEP_API_KEY"))
self.results = defaultdict(list)
self.openai_client = OpenAI()
def format_edge_date_range(self, edge: EntityEdge) -> str:
# return f"{datetime(edge.valid_at).strftime('%Y-%m-%d %H:%M:%S') if edge.valid_at else 'date unknown'} - {(edge.invalid_at.strftime('%Y-%m-%d %H:%M:%S') if edge.invalid_at else 'present')}"
return f"{edge.valid_at if edge.valid_at else 'date unknown'} - {(edge.invalid_at if edge.invalid_at else 'present')}"
def compose_search_context(self, edges: list[EntityEdge], nodes: list[EntityNode]) -> str:
facts = [f" - {edge.fact} ({self.format_edge_date_range(edge)})" for edge in edges]
entities = [f" - {node.name}: {node.summary}" for node in nodes]
return TEMPLATE.format(facts="\n".join(facts), entities="\n".join(entities))
def search_memory(self, run_id, idx, query, max_retries=3, retry_delay=1):
start_time = time.time()
retries = 0
while retries < max_retries:
try:
user_id = f"run_id_{run_id}_experiment_user_{idx}"
edges_results = (
self.zep_client.graph.search(
user_id=user_id, reranker="cross_encoder", query=query, scope="edges", limit=20
)
).edges
node_results = (
self.zep_client.graph.search(user_id=user_id, reranker="rrf", query=query, scope="nodes", limit=20)
).nodes
context = self.compose_search_context(edges_results, node_results)
break
except Exception as e:
print("Retrying...")
retries += 1
if retries >= max_retries:
raise e
time.sleep(retry_delay)
end_time = time.time()
return context, end_time - start_time
def process_question(self, run_id, val, idx):
question = val.get("question", "")
answer = val.get("answer", "")
category = val.get("category", -1)
evidence = val.get("evidence", [])
adversarial_answer = val.get("adversarial_answer", "")
response, search_memory_time, response_time, context = self.answer_question(run_id, idx, question)
result = {
"question": question,
"answer": answer,
"category": category,
"evidence": evidence,
"response": response,
"adversarial_answer": adversarial_answer,
"search_memory_time": search_memory_time,
"response_time": response_time,
"context": context,
}
return result
def answer_question(self, run_id, idx, question):
context, search_memory_time = self.search_memory(run_id, idx, question)
template = Template(ANSWER_PROMPT_ZEP)
answer_prompt = template.render(memories=context, question=question)
t1 = time.time()
response = self.openai_client.chat.completions.create(
model=os.getenv("MODEL"), messages=[{"role": "system", "content": answer_prompt}], temperature=0.0
)
t2 = time.time()
response_time = t2 - t1
return response.choices[0].message.content, search_memory_time, response_time, context
def process_data_file(self, file_path, run_id, output_file_path):
with open(file_path, "r") as f:
data = json.load(f)
for idx, item in tqdm(enumerate(data), total=len(data), desc="Processing conversations"):
qa = item["qa"]
for question_item in tqdm(
qa, total=len(qa), desc=f"Processing questions for conversation {idx}", leave=False
):
result = self.process_question(run_id, question_item, idx)
self.results[idx].append(result)
# Save results after each question is processed
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)
# Final save at the end
with open(output_file_path, "w") as f:
json.dump(self.results, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--run_id", type=str, required=True)
args = parser.parse_args()
zep_search = ZepSearch()
zep_search.process_data_file("../../dataset/locomo10.json", args.run_id, "results/zep_search_results.json")