[Feature] Update db.query to return source of context (#831)
This commit is contained in:
@@ -500,13 +500,17 @@ class EmbedChain(JSONSerializable):
|
||||
|
||||
db_query = ClipProcessor.get_text_features(query=input_query)
|
||||
|
||||
contents = self.db.query(
|
||||
contexts = self.db.query(
|
||||
input_query=db_query,
|
||||
n_results=query_config.number_documents,
|
||||
where=where,
|
||||
skip_embedding=(hasattr(config, "query_type") and config.query_type == "Images"),
|
||||
)
|
||||
return contents
|
||||
|
||||
if len(contexts) > 0 and isinstance(contexts[0], tuple):
|
||||
contexts = list(map(lambda x: x[0], contexts))
|
||||
|
||||
return contexts
|
||||
|
||||
def query(self, input_query: str, config: BaseLlmConfig = None, dry_run=False, where: Optional[Dict] = None) -> str:
|
||||
"""
|
||||
|
||||
@@ -41,15 +41,15 @@ class LlmFactory:
|
||||
|
||||
class EmbedderFactory:
|
||||
provider_to_class = {
|
||||
"azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
|
||||
"gpt4all": "embedchain.embedder.gpt4all.GPT4AllEmbedder",
|
||||
"huggingface": "embedchain.embedder.huggingface.HuggingFaceEmbedder",
|
||||
"vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
|
||||
"azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
|
||||
"openai": "embedchain.embedder.openai.OpenAIEmbedder",
|
||||
"vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
|
||||
}
|
||||
provider_to_config_class = {
|
||||
"openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
|
||||
"azure_openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
|
||||
"openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@@ -72,16 +72,18 @@ class VectorDBFactory:
|
||||
"elasticsearch": "embedchain.vectordb.elasticsearch.ElasticsearchDB",
|
||||
"opensearch": "embedchain.vectordb.opensearch.OpenSearchDB",
|
||||
"pinecone": "embedchain.vectordb.pinecone.PineconeDB",
|
||||
"weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
|
||||
"qdrant": "embedchain.vectordb.qdrant.QdrantDB",
|
||||
"weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
|
||||
"zilliz": "embedchain.vectordb.zilliz.ZillizVectorDB",
|
||||
}
|
||||
provider_to_config_class = {
|
||||
"chroma": "embedchain.config.vectordb.chroma.ChromaDbConfig",
|
||||
"elasticsearch": "embedchain.config.vectordb.elasticsearch.ElasticsearchDBConfig",
|
||||
"opensearch": "embedchain.config.vectordb.opensearch.OpenSearchDBConfig",
|
||||
"pinecone": "embedchain.config.vectordb.pinecone.PineconeDBConfig",
|
||||
"weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
|
||||
"qdrant": "embedchain.config.vectordb.qdrant.QdrantDBConfig",
|
||||
"weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
|
||||
"zilliz": "embedchain.config.vectordb.zilliz.ZillizDBConfig",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from chromadb import Collection, QueryResult
|
||||
from langchain.docstore.document import Document
|
||||
@@ -191,7 +191,9 @@ class ChromaDB(BaseVectorDB):
|
||||
)
|
||||
]
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
|
||||
def query(
|
||||
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
|
||||
) -> List[Tuple[str, str, str]]:
|
||||
"""
|
||||
Query contents from vector database based on vector similarity
|
||||
|
||||
@@ -204,8 +206,8 @@ class ChromaDB(BaseVectorDB):
|
||||
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
|
||||
:type skip_embedding: bool
|
||||
:raises InvalidDimensionException: Dimensions do not match.
|
||||
:return: The content of the document that matched your query.
|
||||
:rtype: List[str]
|
||||
:return: The content of the document that matched your query, url of the source, doc_id
|
||||
:rtype: List[Tuple[str,str,str]]
|
||||
"""
|
||||
try:
|
||||
if skip_embedding:
|
||||
@@ -231,8 +233,14 @@ class ChromaDB(BaseVectorDB):
|
||||
" embeddings, is used to retrieve an embedding from the database."
|
||||
) from None
|
||||
results_formatted = self._format_result(result)
|
||||
contents = [result[0].page_content for result in results_formatted]
|
||||
return contents
|
||||
contexts = []
|
||||
for result in results_formatted:
|
||||
context = result[0].page_content
|
||||
metadata = result[0].metadata
|
||||
source = metadata["url"]
|
||||
doc_id = metadata["doc_id"]
|
||||
contexts.append((context, source, doc_id))
|
||||
return contexts
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
try:
|
||||
from elasticsearch import Elasticsearch
|
||||
@@ -135,7 +135,9 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
bulk(self.client, docs)
|
||||
self.client.indices.refresh(index=self._get_index())
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
|
||||
def query(
|
||||
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
|
||||
) -> List[Tuple[str, str, str]]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
|
||||
@@ -147,8 +149,9 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
:type where: Dict[str, any]
|
||||
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
|
||||
:type skip_embedding: bool
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
:return: The context of the document that matched your query, url of the source, doc_id
|
||||
|
||||
:rtype: List[Tuple[str,str,str]]
|
||||
"""
|
||||
if skip_embedding:
|
||||
query_vector = input_query
|
||||
@@ -156,6 +159,7 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
input_query_vector = self.embedder.embedding_fn(input_query)
|
||||
query_vector = input_query_vector[0]
|
||||
|
||||
# `https://www.elastic.co/guide/en/elasticsearch/reference/7.17/query-dsl-script-score-query.html`
|
||||
query = {
|
||||
"script_score": {
|
||||
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
|
||||
@@ -167,11 +171,17 @@ class ElasticsearchDB(BaseVectorDB):
|
||||
}
|
||||
if "app_id" in where:
|
||||
app_id = where["app_id"]
|
||||
query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
|
||||
_source = ["text"]
|
||||
query["script_score"]["query"] = {"match": {"metadata.app_id": app_id}}
|
||||
_source = ["text", "metadata.url", "metadata.doc_id"]
|
||||
response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
|
||||
docs = response["hits"]["hits"]
|
||||
contents = [doc["_source"]["text"] for doc in docs]
|
||||
contents = []
|
||||
for doc in docs:
|
||||
context = doc["_source"]["text"]
|
||||
metadata = doc["_source"]["metadata"]
|
||||
source = metadata["url"]
|
||||
doc_id = metadata["doc_id"]
|
||||
contents.append(tuple((context, source, doc_id)))
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Set
|
||||
from typing import Dict, List, Optional, Set, Tuple
|
||||
|
||||
try:
|
||||
from opensearchpy import OpenSearch
|
||||
@@ -145,7 +145,9 @@ class OpenSearchDB(BaseVectorDB):
|
||||
bulk(self.client, docs)
|
||||
self.client.indices.refresh(index=self._get_index())
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
|
||||
def query(
|
||||
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
|
||||
) -> List[Tuple[str, str, str]]:
|
||||
"""
|
||||
query contents from vector data base based on vector similarity
|
||||
|
||||
@@ -157,8 +159,8 @@ class OpenSearchDB(BaseVectorDB):
|
||||
:type where: Dict[str, any]
|
||||
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
|
||||
:type skip_embedding: bool
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
:return: The content of the document that matched your query, url of the source, doc_id
|
||||
:rtype: List[Tuple[str,str,str]]
|
||||
"""
|
||||
# TODO(rupeshbansal, deshraj): Add support for skip embeddings here if already exists
|
||||
embeddings = OpenAIEmbeddings()
|
||||
@@ -185,7 +187,13 @@ class OpenSearchDB(BaseVectorDB):
|
||||
pre_filter=pre_filter,
|
||||
k=n_results,
|
||||
)
|
||||
contents = [doc.page_content for doc in docs]
|
||||
|
||||
contents = []
|
||||
for doc in docs:
|
||||
context = doc.page_content
|
||||
source = doc.metadata["url"]
|
||||
doc_id = doc.metadata["doc_id"]
|
||||
contents.append(tuple((context, source, doc_id)))
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
try:
|
||||
import pinecone
|
||||
@@ -118,7 +118,9 @@ class PineconeDB(BaseVectorDB):
|
||||
for i in range(0, len(docs), self.BATCH_SIZE):
|
||||
self.client.upsert(docs[i : i + self.BATCH_SIZE])
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
|
||||
def query(
|
||||
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
|
||||
) -> List[Tuple[str, str, str]]:
|
||||
"""
|
||||
query contents from vector database based on vector similarity
|
||||
:param input_query: list of query string
|
||||
@@ -129,16 +131,22 @@ class PineconeDB(BaseVectorDB):
|
||||
:type where: Dict[str, any]
|
||||
:param skip_embedding: Optional. if True, input_query is already embedded
|
||||
:type skip_embedding: bool
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
:return: The content of the document that matched your query, url of the source, doc_id
|
||||
:rtype: List[Tuple[str,str,str]]
|
||||
"""
|
||||
if not skip_embedding:
|
||||
query_vector = self.embedder.embedding_fn([input_query])[0]
|
||||
else:
|
||||
query_vector = input_query
|
||||
contents = self.client.query(vector=query_vector, filter=where, top_k=n_results, include_metadata=True)
|
||||
embeddings = list(map(lambda content: content["metadata"]["text"], contents["matches"]))
|
||||
return embeddings
|
||||
data = self.client.query(vector=query_vector, filter=where, top_k=n_results, include_metadata=True)
|
||||
contents = []
|
||||
for doc in data["matches"]:
|
||||
metadata = doc["metadata"]
|
||||
context = metadata["text"]
|
||||
source = metadata["url"]
|
||||
doc_id = metadata["doc_id"]
|
||||
contents.append(tuple((context, source, doc_id)))
|
||||
return contents
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import copy
|
||||
import os
|
||||
import uuid
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
try:
|
||||
from qdrant_client import QdrantClient
|
||||
@@ -160,7 +160,9 @@ class QdrantDB(BaseVectorDB):
|
||||
),
|
||||
)
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
|
||||
def query(
|
||||
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
|
||||
) -> List[Tuple[str, str, str]]:
|
||||
"""
|
||||
query contents from vector database based on vector similarity
|
||||
:param input_query: list of query string
|
||||
@@ -172,8 +174,8 @@ class QdrantDB(BaseVectorDB):
|
||||
:param skip_embedding: A boolean flag indicating if the embedding for the documents to be added is to be
|
||||
generated or not
|
||||
:type skip_embedding: bool
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
:return: The context of the document that matched your query, url of the source, doc_id
|
||||
:rtype: List[Tuple[str,str,str]]
|
||||
"""
|
||||
if not skip_embedding:
|
||||
query_vector = self.embedder.embedding_fn([input_query])[0]
|
||||
@@ -199,9 +201,14 @@ class QdrantDB(BaseVectorDB):
|
||||
query_vector=query_vector,
|
||||
limit=n_results,
|
||||
)
|
||||
|
||||
response = []
|
||||
for result in results:
|
||||
response.append(result.payload.get("text", ""))
|
||||
context = result.payload["text"]
|
||||
metadata = result.payload["metadata"]
|
||||
source = metadata["url"]
|
||||
doc_id = metadata["doc_id"]
|
||||
response.append(tuple((context, source, doc_id)))
|
||||
return response
|
||||
|
||||
def count(self) -> int:
|
||||
@@ -211,3 +218,15 @@ class QdrantDB(BaseVectorDB):
|
||||
def reset(self):
|
||||
self.client.delete_collection(collection_name=self.collection_name)
|
||||
self._initialize()
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
Set the name of the collection. A collection is an isolated space for vectors.
|
||||
|
||||
:param name: Name of the collection.
|
||||
:type name: str
|
||||
"""
|
||||
if not isinstance(name, str):
|
||||
raise TypeError("Collection name must be a string")
|
||||
self.config.collection_name = name
|
||||
self.collection_name = self._get_or_create_collection()
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import copy
|
||||
import os
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
try:
|
||||
import weaviate
|
||||
@@ -194,7 +194,9 @@ class WeaviateDB(BaseVectorDB):
|
||||
)
|
||||
batch.add_reference(obj_uuid, self.index_name, "metadata", metadata_uuid, self.index_name + "_metadata")
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
|
||||
def query(
|
||||
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
|
||||
) -> List[Tuple[str, str, str]]:
|
||||
"""
|
||||
query contents from vector database based on vector similarity
|
||||
:param input_query: list of query string
|
||||
@@ -206,14 +208,15 @@ class WeaviateDB(BaseVectorDB):
|
||||
:param skip_embedding: A boolean flag indicating if the embedding for the documents to be added is to be
|
||||
generated or not
|
||||
:type skip_embedding: bool
|
||||
:return: Database contents that are the result of the query
|
||||
:rtype: List[str]
|
||||
:return: The context of the document that matched your query, url of the source, doc_id
|
||||
:rtype: List[Tuple[str,str,str]]
|
||||
"""
|
||||
if not skip_embedding:
|
||||
query_vector = self.embedder.embedding_fn([input_query])[0]
|
||||
else:
|
||||
query_vector = input_query
|
||||
keys = set(where.keys() if where is not None else set())
|
||||
data_fields = ["text"]
|
||||
if len(keys.intersection(self.metadata_keys)) != 0:
|
||||
weaviate_where_operands = []
|
||||
for key in keys:
|
||||
@@ -231,7 +234,7 @@ class WeaviateDB(BaseVectorDB):
|
||||
weaviate_where_clause = {"operator": "And", "operands": weaviate_where_operands}
|
||||
|
||||
results = (
|
||||
self.client.query.get(self.index_name, ["text"])
|
||||
self.client.query.get(self.index_name, data_fields)
|
||||
.with_where(weaviate_where_clause)
|
||||
.with_near_vector({"vector": query_vector})
|
||||
.with_limit(n_results)
|
||||
@@ -239,16 +242,13 @@ class WeaviateDB(BaseVectorDB):
|
||||
)
|
||||
else:
|
||||
results = (
|
||||
self.client.query.get(self.index_name, ["text"])
|
||||
self.client.query.get(self.index_name, data_fields)
|
||||
.with_near_vector({"vector": query_vector})
|
||||
.with_limit(n_results)
|
||||
.do()
|
||||
)
|
||||
matched_tokens = []
|
||||
for result in results["data"]["Get"].get(self.index_name):
|
||||
matched_tokens.append(result["text"])
|
||||
|
||||
return matched_tokens
|
||||
contexts = results["data"]["Get"].get(self.index_name)
|
||||
return contexts
|
||||
|
||||
def set_collection_name(self, name: str):
|
||||
"""
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from typing import Dict, List, Optional
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
from embedchain.config import ZillizDBConfig
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
@@ -61,6 +62,7 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
:type name: str
|
||||
"""
|
||||
if utility.has_collection(name):
|
||||
logging.info(f"[ZillizDB]: found an existing collection {name}, make sure the auto-id is disabled.")
|
||||
self.collection = Collection(name)
|
||||
else:
|
||||
fields = [
|
||||
@@ -124,7 +126,9 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
self.collection.flush()
|
||||
self.client.flush(self.config.collection_name)
|
||||
|
||||
def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
|
||||
def query(
|
||||
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
|
||||
) -> List[Tuple[str, str, str]]:
|
||||
"""
|
||||
Query contents from vector data base based on vector similarity
|
||||
|
||||
@@ -135,8 +139,8 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
:param where: to filter data
|
||||
:type where: str
|
||||
:raises InvalidDimensionException: Dimensions do not match.
|
||||
:return: The content of the document that matched your query.
|
||||
:rtype: List[str]
|
||||
:return: The context of the document that matched your query, url of the source, doc_id
|
||||
:rtype: List[Tuple[str,str,str]]
|
||||
"""
|
||||
|
||||
if self.collection.is_empty:
|
||||
@@ -145,13 +149,14 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
if not isinstance(where, str):
|
||||
where = None
|
||||
|
||||
output_fields = ["text", "url", "doc_id"]
|
||||
if skip_embedding:
|
||||
query_vector = input_query
|
||||
query_result = self.client.search(
|
||||
collection_name=self.config.collection_name,
|
||||
data=query_vector,
|
||||
limit=n_results,
|
||||
output_fields=["text"],
|
||||
output_fields=output_fields,
|
||||
)
|
||||
|
||||
else:
|
||||
@@ -162,13 +167,16 @@ class ZillizVectorDB(BaseVectorDB):
|
||||
collection_name=self.config.collection_name,
|
||||
data=[query_vector],
|
||||
limit=n_results,
|
||||
output_fields=["text"],
|
||||
output_fields=output_fields,
|
||||
)
|
||||
|
||||
doc_list = []
|
||||
for query in query_result:
|
||||
doc_list.append(query[0]["entity"]["text"])
|
||||
|
||||
data = query[0]["entity"]
|
||||
context = data["text"]
|
||||
source = data["url"]
|
||||
doc_id = data["doc_id"]
|
||||
doc_list.append(tuple((context, source, doc_id)))
|
||||
return doc_list
|
||||
|
||||
def count(self) -> int:
|
||||
|
||||
Reference in New Issue
Block a user