[Feature] Setup base for creating pipelines in embedchain (#834)
This commit is contained in:
@@ -3,4 +3,5 @@ import importlib.metadata
|
||||
__version__ = importlib.metadata.version(__package__ or __name__)
|
||||
|
||||
from embedchain.apps.app import App # noqa: F401
|
||||
from embedchain.pipeline import Pipeline # noqa: F401
|
||||
from embedchain.vectordb.chroma import ChromaDB # noqa: F401
|
||||
|
||||
@@ -2,10 +2,12 @@
|
||||
|
||||
from .add_config import AddConfig, ChunkerConfig
|
||||
from .apps.app_config import AppConfig
|
||||
from .pipeline_config import PipelineConfig
|
||||
from .base_config import BaseConfig
|
||||
from .embedder.base import BaseEmbedderConfig
|
||||
from .embedder.base import BaseEmbedderConfig as EmbedderConfig
|
||||
from .llm.base import BaseLlmConfig
|
||||
from .pipeline_config import PipelineConfig
|
||||
from .vectordb.chroma import ChromaDbConfig
|
||||
from .vectordb.elasticsearch import ElasticsearchDBConfig
|
||||
from .vectordb.opensearch import OpenSearchDBConfig
|
||||
|
||||
38
embedchain/config/pipeline_config.py
Normal file
38
embedchain/config/pipeline_config.py
Normal file
@@ -0,0 +1,38 @@
|
||||
from typing import Optional
|
||||
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
|
||||
from .apps.base_app_config import BaseAppConfig
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class PipelineConfig(BaseAppConfig):
|
||||
"""
|
||||
Config to initialize an embedchain custom `App` instance, with extra config options.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
log_level: str = "WARNING",
|
||||
id: Optional[str] = None,
|
||||
name: Optional[str] = None,
|
||||
collect_metrics: Optional[bool] = False,
|
||||
):
|
||||
"""
|
||||
Initializes a configuration class instance for an App. This is the simplest form of an embedchain app.
|
||||
Most of the configuration is done in the `App` class itself.
|
||||
|
||||
:param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING"
|
||||
:type log_level: str, optional
|
||||
:param id: ID of the app. Document metadata will have this id., defaults to None
|
||||
:type id: Optional[str], optional
|
||||
:param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True
|
||||
:type collect_metrics: Optional[bool], optional
|
||||
:param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead,
|
||||
defaults to None
|
||||
:type collection_name: Optional[str], optional
|
||||
"""
|
||||
self._setup_logging(log_level)
|
||||
self.id = id
|
||||
self.name = name
|
||||
self.collect_metrics = collect_metrics
|
||||
98
embedchain/pipeline.py
Normal file
98
embedchain/pipeline.py
Normal file
@@ -0,0 +1,98 @@
|
||||
import threading
|
||||
import uuid
|
||||
|
||||
import yaml
|
||||
|
||||
from embedchain.config import PipelineConfig
|
||||
from embedchain.embedchain import EmbedChain
|
||||
from embedchain.embedder.base import BaseEmbedder
|
||||
from embedchain.embedder.openai import OpenAIEmbedder
|
||||
from embedchain.factory import EmbedderFactory, VectorDBFactory
|
||||
from embedchain.helper.json_serializable import register_deserializable
|
||||
from embedchain.vectordb.base import BaseVectorDB
|
||||
from embedchain.vectordb.chroma import ChromaDB
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class Pipeline(EmbedChain):
|
||||
"""
|
||||
EmbedChain pipeline lets you create a LLM powered app for your unstructured
|
||||
data by defining a pipeline with your chosen data source, embedding model,
|
||||
and vector database.
|
||||
"""
|
||||
|
||||
def __init__(self, config: PipelineConfig = None, db: BaseVectorDB = None, embedding_model: BaseEmbedder = None):
|
||||
"""
|
||||
Initialize a new `App` instance.
|
||||
|
||||
:param config: Configuration for the pipeline, defaults to None
|
||||
:type config: PipelineConfig, optional
|
||||
:param db: The database to use for storing and retrieving embeddings, defaults to None
|
||||
:type db: BaseVectorDB, optional
|
||||
:param embedding_model: The embedding model used to calculate embeddings, defaults to None
|
||||
:type embedding_model: BaseEmbedder, optional
|
||||
"""
|
||||
super().__init__()
|
||||
self.config = config or PipelineConfig()
|
||||
self.name = self.config.name
|
||||
self.id = self.config.id or str(uuid.uuid4())
|
||||
|
||||
self.embedding_model = embedding_model or OpenAIEmbedder()
|
||||
self.db = db or ChromaDB()
|
||||
self._initialize_db()
|
||||
|
||||
self.user_asks = [] # legacy defaults
|
||||
|
||||
self.s_id = self.config.id or str(uuid.uuid4())
|
||||
self.u_id = self._load_or_generate_user_id()
|
||||
|
||||
thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("pipeline_init",))
|
||||
thread_telemetry.start()
|
||||
|
||||
def _initialize_db(self):
|
||||
"""
|
||||
Initialize the database.
|
||||
"""
|
||||
self.db._set_embedder(self.embedding_model)
|
||||
self.db._initialize()
|
||||
self.db.set_collection_name(self.name)
|
||||
|
||||
def search(self, query, num_documents=3):
|
||||
"""
|
||||
Search for similar documents related to the query in the vector database.
|
||||
"""
|
||||
where = {"app_id": self.id}
|
||||
return self.db.query(
|
||||
query,
|
||||
n_results=num_documents,
|
||||
where=where,
|
||||
skip_embedding=False,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, yaml_path: str):
|
||||
"""
|
||||
Instantiate a Pipeline object from a YAML configuration file.
|
||||
|
||||
:param yaml_path: Path to the YAML configuration file.
|
||||
:type yaml_path: str
|
||||
:return: An instance of the Pipeline class.
|
||||
:rtype: Pipeline
|
||||
"""
|
||||
with open(yaml_path, "r") as file:
|
||||
config_data = yaml.safe_load(file)
|
||||
|
||||
pipeline_config_data = config_data.get("pipeline", {})
|
||||
db_config_data = config_data.get("vectordb", {})
|
||||
embedding_model_config_data = config_data.get("embedding_model", {})
|
||||
|
||||
pipeline_config = PipelineConfig(**pipeline_config_data)
|
||||
|
||||
db_provider = db_config_data.get("provider", "chroma")
|
||||
db = VectorDBFactory.create(db_provider, db_config_data.get("config", {}))
|
||||
|
||||
embedding_model_provider = embedding_model_config_data.get("provider", "openai")
|
||||
embedding_model = EmbedderFactory.create(
|
||||
embedding_model_provider, embedding_model_config_data.get("config", {})
|
||||
)
|
||||
return cls(config=pipeline_config, db=db, embedding_model=embedding_model)
|
||||
Reference in New Issue
Block a user