[Feature] Setup base for creating pipelines in embedchain (#834)

This commit is contained in:
Deshraj Yadav
2023-10-19 17:46:15 -07:00
committed by GitHub
parent 2b881aaad0
commit d18e533adf
4 changed files with 139 additions and 0 deletions

View File

@@ -3,4 +3,5 @@ import importlib.metadata
__version__ = importlib.metadata.version(__package__ or __name__)
from embedchain.apps.app import App # noqa: F401
from embedchain.pipeline import Pipeline # noqa: F401
from embedchain.vectordb.chroma import ChromaDB # noqa: F401

View File

@@ -2,10 +2,12 @@
from .add_config import AddConfig, ChunkerConfig
from .apps.app_config import AppConfig
from .pipeline_config import PipelineConfig
from .base_config import BaseConfig
from .embedder.base import BaseEmbedderConfig
from .embedder.base import BaseEmbedderConfig as EmbedderConfig
from .llm.base import BaseLlmConfig
from .pipeline_config import PipelineConfig
from .vectordb.chroma import ChromaDbConfig
from .vectordb.elasticsearch import ElasticsearchDBConfig
from .vectordb.opensearch import OpenSearchDBConfig

View File

@@ -0,0 +1,38 @@
from typing import Optional
from embedchain.helper.json_serializable import register_deserializable
from .apps.base_app_config import BaseAppConfig
@register_deserializable
class PipelineConfig(BaseAppConfig):
"""
Config to initialize an embedchain custom `App` instance, with extra config options.
"""
def __init__(
self,
log_level: str = "WARNING",
id: Optional[str] = None,
name: Optional[str] = None,
collect_metrics: Optional[bool] = False,
):
"""
Initializes a configuration class instance for an App. This is the simplest form of an embedchain app.
Most of the configuration is done in the `App` class itself.
:param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING"
:type log_level: str, optional
:param id: ID of the app. Document metadata will have this id., defaults to None
:type id: Optional[str], optional
:param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True
:type collect_metrics: Optional[bool], optional
:param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead,
defaults to None
:type collection_name: Optional[str], optional
"""
self._setup_logging(log_level)
self.id = id
self.name = name
self.collect_metrics = collect_metrics

98
embedchain/pipeline.py Normal file
View File

@@ -0,0 +1,98 @@
import threading
import uuid
import yaml
from embedchain.config import PipelineConfig
from embedchain.embedchain import EmbedChain
from embedchain.embedder.base import BaseEmbedder
from embedchain.embedder.openai import OpenAIEmbedder
from embedchain.factory import EmbedderFactory, VectorDBFactory
from embedchain.helper.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB
from embedchain.vectordb.chroma import ChromaDB
@register_deserializable
class Pipeline(EmbedChain):
"""
EmbedChain pipeline lets you create a LLM powered app for your unstructured
data by defining a pipeline with your chosen data source, embedding model,
and vector database.
"""
def __init__(self, config: PipelineConfig = None, db: BaseVectorDB = None, embedding_model: BaseEmbedder = None):
"""
Initialize a new `App` instance.
:param config: Configuration for the pipeline, defaults to None
:type config: PipelineConfig, optional
:param db: The database to use for storing and retrieving embeddings, defaults to None
:type db: BaseVectorDB, optional
:param embedding_model: The embedding model used to calculate embeddings, defaults to None
:type embedding_model: BaseEmbedder, optional
"""
super().__init__()
self.config = config or PipelineConfig()
self.name = self.config.name
self.id = self.config.id or str(uuid.uuid4())
self.embedding_model = embedding_model or OpenAIEmbedder()
self.db = db or ChromaDB()
self._initialize_db()
self.user_asks = [] # legacy defaults
self.s_id = self.config.id or str(uuid.uuid4())
self.u_id = self._load_or_generate_user_id()
thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("pipeline_init",))
thread_telemetry.start()
def _initialize_db(self):
"""
Initialize the database.
"""
self.db._set_embedder(self.embedding_model)
self.db._initialize()
self.db.set_collection_name(self.name)
def search(self, query, num_documents=3):
"""
Search for similar documents related to the query in the vector database.
"""
where = {"app_id": self.id}
return self.db.query(
query,
n_results=num_documents,
where=where,
skip_embedding=False,
)
@classmethod
def from_config(cls, yaml_path: str):
"""
Instantiate a Pipeline object from a YAML configuration file.
:param yaml_path: Path to the YAML configuration file.
:type yaml_path: str
:return: An instance of the Pipeline class.
:rtype: Pipeline
"""
with open(yaml_path, "r") as file:
config_data = yaml.safe_load(file)
pipeline_config_data = config_data.get("pipeline", {})
db_config_data = config_data.get("vectordb", {})
embedding_model_config_data = config_data.get("embedding_model", {})
pipeline_config = PipelineConfig(**pipeline_config_data)
db_provider = db_config_data.get("provider", "chroma")
db = VectorDBFactory.create(db_provider, db_config_data.get("config", {}))
embedding_model_provider = embedding_model_config_data.get("provider", "openai")
embedding_model = EmbedderFactory.create(
embedding_model_provider, embedding_model_config_data.get("config", {})
)
return cls(config=pipeline_config, db=db, embedding_model=embedding_model)