[ Refactored ] embedding models and [ Update ] documentation for Gemini model (#1931)
This commit is contained in:
@@ -16,16 +16,9 @@ config = {
|
||||
"embedder": {
|
||||
"provider": "gemini",
|
||||
"config": {
|
||||
"model": "models/text-embedding-004"
|
||||
"model": "models/text-embedding-004",
|
||||
}
|
||||
},
|
||||
"vector_store": {
|
||||
"provider": "qdrant",
|
||||
"config": {
|
||||
"collection_name": "test",
|
||||
"embedding_model_dims": 768,
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
@@ -39,3 +32,5 @@ Here are the parameters available for configuring Gemini embedder:
|
||||
| Parameter | Description | Default Value |
|
||||
| --- | --- | --- |
|
||||
| `model` | The name of the embedding model to use | `models/text-embedding-004` |
|
||||
| `embedding_dims` | Dimensions of the embedding model | `768` |
|
||||
| `api_key` | The Gemini API key | `None` |
|
||||
|
||||
@@ -9,10 +9,13 @@ from mem0.embeddings.base import EmbeddingBase
|
||||
class GoogleGenAIEmbedding(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
if self.config.model is None:
|
||||
self.config.model = "models/text-embedding-004" # embedding-dim = 768
|
||||
|
||||
self.config.model = self.config.model or "models/text-embedding-004"
|
||||
self.config.embedding_dims = self.config.embedding_dims or 768
|
||||
|
||||
genai.configure(api_key=self.config.api_key or os.getenv("GOOGLE_API_KEY"))
|
||||
api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY")
|
||||
|
||||
genai.configure(api_key=api_key)
|
||||
|
||||
def embed(self, text):
|
||||
"""
|
||||
|
||||
@@ -10,13 +10,11 @@ class HuggingFaceEmbedding(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if self.config.model is None:
|
||||
self.config.model = "multi-qa-MiniLM-L6-cos-v1"
|
||||
self.config.model = self.config.model or "multi-qa-MiniLM-L6-cos-v1"
|
||||
|
||||
self.model = SentenceTransformer(self.config.model, **self.config.model_kwargs)
|
||||
|
||||
if self.config.embedding_dims is None:
|
||||
self.config.embedding_dims = self.model.get_sentence_embedding_dimension()
|
||||
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
|
||||
|
||||
def embed(self, text):
|
||||
"""
|
||||
|
||||
@@ -25,10 +25,8 @@ class OllamaEmbedding(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
if not self.config.model:
|
||||
self.config.model = "nomic-embed-text"
|
||||
if not self.config.embedding_dims:
|
||||
self.config.embedding_dims = 512
|
||||
self.config.model = self.config.model or "nomic-embed-text"
|
||||
self.config.embedding_dims = self.config.embedding_dims or 512
|
||||
|
||||
self.client = Client(host=self.config.ollama_base_url)
|
||||
self._ensure_model_exists()
|
||||
|
||||
Reference in New Issue
Block a user