WeaviateDB Integration (#2339)

This commit is contained in:
Parshva Daftari
2025-03-11 00:12:17 +05:30
committed by GitHub
parent 6e4fb22a7c
commit b89628322d
11 changed files with 626 additions and 3 deletions

View File

@@ -12,7 +12,7 @@ install:
install_all:
poetry install
poetry run pip install groq together boto3 litellm ollama chromadb sentence_transformers vertexai \
poetry run pip install groq together boto3 litellm ollama chromadb weaviate weaviate-client sentence_transformers vertexai \
google-generativeai elasticsearch opensearch-py vecs
# Format code with ruff

View File

@@ -0,0 +1,47 @@
[Weaviate](https://weaviate.io/) is an open-source vector search engine. It allows efficient storage and retrieval of high-dimensional vector embeddings, enabling powerful search and retrieval capabilities.
### Installation
```bash
pip install weaviate weaviate-client
```
### Usage
```python Python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "weaviate",
"config": {
"collection_name": "test",
"cluster_url": "http://localhost:8080",
"auth_client_secret": None,
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movie? They can be quite engaging."},
{"role": "user", "content": "Im not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
```
### Config
Let's see the available parameters for the `weaviate` config:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `collection_name` | The name of the collection to store the vectors | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `cluster_url` | URL for the Weaviate server | `None` |
| `auth_client_secret` | API key for Weaviate authentication | `None` |

View File

@@ -25,6 +25,7 @@ See the list of supported vector databases below.
<Card title="OpenSearch" href="/components/vectordbs/dbs/opensearch"></Card>
<Card title="Supabase" href="/components/vectordbs/dbs/supabase"></Card>
<Card title="Vertex AI Vector Search" href="/components/vectordbs/dbs/vertex_ai_vector_search"></Card>
<Card title="Weaviate" href="/components/vectordbs/dbs/weaviate"></Card>
</CardGroup>
## Usage

View File

@@ -130,7 +130,8 @@
"components/vectordbs/dbs/elasticsearch",
"components/vectordbs/dbs/opensearch",
"components/vectordbs/dbs/supabase",
"components/vectordbs/dbs/vertex_ai_vector_search"
"components/vectordbs/dbs/vertex_ai_vector_search",
"components/vectordbs/dbs/weaviate"
]
}
]

View File

@@ -0,0 +1,42 @@
from typing import Any, ClassVar, Dict, Optional
from pydantic import BaseModel, Field, model_validator
class WeaviateConfig(BaseModel):
from weaviate import WeaviateClient
WeaviateClient: ClassVar[type] = WeaviateClient
collection_name: str = Field("mem0", description="Name of the collection")
embedding_model_dims: int = Field(1536, description="Dimensions of the embedding model")
cluster_url: Optional[str] = Field(None, description="URL for Weaviate server")
auth_client_secret: Optional[str] = Field(None, description="API key for Weaviate authentication")
additional_headers: Optional[Dict[str, str]] = Field(None, description="Additional headers for requests")
@model_validator(mode="before")
@classmethod
def check_connection_params(cls, values: Dict[str, Any]) -> Dict[str, Any]:
cluster_url = values.get("cluster_url")
if not cluster_url:
raise ValueError("'cluster_url' must be provided.")
return values
@model_validator(mode="before")
@classmethod
def validate_extra_fields(cls, values: Dict[str, Any]) -> Dict[str, Any]:
allowed_fields = set(cls.model_fields.keys())
input_fields = set(values.keys())
extra_fields = input_fields - allowed_fields
if extra_fields:
raise ValueError(
f"Extra fields not allowed: {', '.join(extra_fields)}. Please input only the following fields: {', '.join(allowed_fields)}"
)
return values
model_config = {
"arbitrary_types_allowed": True,
}

View File

@@ -313,6 +313,7 @@ class Memory(MemoryBase):
"data",
"created_at",
"updated_at",
"id"
}
additional_metadata = {k: v for k, v in memory.payload.items() if k not in excluded_keys}
if additional_metadata:
@@ -376,6 +377,7 @@ class Memory(MemoryBase):
"data",
"created_at",
"updated_at",
"id",
}
all_memories = [
{
@@ -469,6 +471,7 @@ class Memory(MemoryBase):
"data",
"created_at",
"updated_at",
"id",
}
original_memories = [

View File

@@ -72,6 +72,7 @@ class VectorStoreFactory:
"vertex_ai_vector_search": "mem0.vector_stores.vertex_ai_vector_search.GoogleMatchingEngine",
"opensearch": "mem0.vector_stores.opensearch.OpenSearchDB",
"supabase": "mem0.vector_stores.supabase.Supabase",
"weaviate": "mem0.vector_stores.weaviate.Weaviate",
}
@classmethod

View File

@@ -21,6 +21,7 @@ class VectorStoreConfig(BaseModel):
"vertex_ai_vector_search": "GoogleMatchingEngineConfig",
"opensearch": "OpenSearchConfig",
"supabase": "SupabaseConfig",
"weaviate": "WeaviateConfig",
}
@model_validator(mode="after")

View File

@@ -1,6 +1,6 @@
import logging
import uuid
from typing import List, Optional, Dict, Any
from typing import List, Optional
from pydantic import BaseModel

View File

@@ -0,0 +1,307 @@
import logging
import uuid
from typing import Dict, List, Mapping, Optional
from pydantic import BaseModel
try:
import weaviate
except ImportError:
raise ImportError(
"The 'weaviate' library is required. Please install it using 'pip install weaviate-client weaviate'."
)
import weaviate.classes.config as wvcc
from weaviate.classes.init import Auth
from weaviate.classes.query import Filter, MetadataQuery
from weaviate.util import get_valid_uuid
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: str
score: float
payload: Dict
class Weaviate(VectorStoreBase):
def __init__(
self,
collection_name: str,
embedding_model_dims: int,
cluster_url: str = None,
auth_client_secret: str = None,
additional_headers: dict = None,
):
"""
Initialize the Weaviate vector store.
Args:
collection_name (str): Name of the collection/class in Weaviate.
embedding_model_dims (int): Dimensions of the embedding model.
client (WeaviateClient, optional): Existing Weaviate client instance. Defaults to None.
cluster_url (str, optional): URL for Weaviate server. Defaults to None.
auth_config (dict, optional): Authentication configuration for Weaviate. Defaults to None.
additional_headers (dict, optional): Additional headers for requests. Defaults to None.
"""
if "localhost" in cluster_url:
self.client = weaviate.connect_to_local(headers=additional_headers)
else:
self.client = weaviate.connect_to_wcs(
cluster_url=cluster_url,
auth_credentials=Auth.api_key(auth_client_secret),
headers=additional_headers,
)
self.collection_name = collection_name
self.create_col(embedding_model_dims)
def _parse_output(self, data: Dict) -> List[OutputData]:
"""
Parse the output data.
Args:
data (Dict): Output data.
Returns:
List[OutputData]: Parsed output data.
"""
keys = ["ids", "distances", "metadatas"]
values = []
for key in keys:
value = data.get(key, [])
if isinstance(value, list) and value and isinstance(value[0], list):
value = value[0]
values.append(value)
ids, distances, metadatas = values
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
result = []
for i in range(max_length):
entry = OutputData(
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
score=(distances[i] if isinstance(distances, list) and distances and i < len(distances) else None),
payload=(metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None),
)
result.append(entry)
return result
def create_col(self, vector_size, distance="cosine"):
"""
Create a new collection with the specified schema.
Args:
vector_size (int): Size of the vectors to be stored.
distance (str, optional): Distance metric for vector similarity. Defaults to "cosine".
"""
if self.client.collections.exists(self.collection_name):
logging.debug(f"Collection {self.collection_name} already exists. Skipping creation.")
return
properties = [
wvcc.Property(name="ids", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="hash", data_type=wvcc.DataType.TEXT),
wvcc.Property(
name="metadata",
data_type=wvcc.DataType.TEXT,
description="Additional metadata",
),
wvcc.Property(name="data", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="created_at", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="category", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="updated_at", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="user_id", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="agent_id", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="run_id", data_type=wvcc.DataType.TEXT),
]
vectorizer_config = wvcc.Configure.Vectorizer.none()
vector_index_config = wvcc.Configure.VectorIndex.hnsw()
self.client.collections.create(
self.collection_name,
vectorizer_config=vectorizer_config,
vector_index_config=vector_index_config,
properties=properties,
)
def insert(self, vectors, payloads=None, ids=None):
"""
Insert vectors into a collection.
Args:
vectors (list): List of vectors to insert.
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
"""
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
with self.client.batch.fixed_size(batch_size=100) as batch:
for idx, vector in enumerate(vectors):
object_id = ids[idx] if ids and idx < len(ids) else str(uuid.uuid4())
object_id = get_valid_uuid(object_id)
data_object = payloads[idx] if payloads and idx < len(payloads) else {}
# Ensure 'id' is not included in properties (it's used as the Weaviate object ID)
if "ids" in data_object:
del data_object["ids"]
batch.add_object(collection=self.collection_name, properties=data_object, uuid=object_id, vector=vector)
def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
"""
Search for similar vectors.
"""
collection = self.client.collections.get(str(self.collection_name))
filter_conditions = []
if filters:
for key, value in filters.items():
if value and key in ["user_id", "agent_id", "run_id"]:
filter_conditions.append(Filter.by_property(key).equal(value))
combined_filter = Filter.all_of(filter_conditions) if filter_conditions else None
response = collection.query.hybrid(
query="",
vector=query,
limit=limit,
filters=combined_filter,
return_properties=["hash", "created_at", "updated_at", "user_id", "agent_id", "run_id", "data", "category"],
return_metadata=MetadataQuery(score=True),
)
results = []
for obj in response.objects:
payload = obj.properties.copy()
for id_field in ["run_id", "agent_id", "user_id"]:
if id_field in payload and payload[id_field] is None:
del payload[id_field]
payload["id"] = str(obj.uuid).split("'")[0] # Include the id in the payload
results.append(
OutputData(
id=str(obj.uuid),
score=1
if obj.metadata.distance is None
else 1 - obj.metadata.distance, # Convert distance to score
payload=payload,
)
)
return results
def delete(self, vector_id):
"""
Delete a vector by ID.
Args:
vector_id: ID of the vector to delete.
"""
collection = self.client.collections.get(str(self.collection_name))
collection.data.delete_by_id(vector_id)
def update(self, vector_id, vector=None, payload=None):
"""
Update a vector and its payload.
Args:
vector_id: ID of the vector to update.
vector (list, optional): Updated vector. Defaults to None.
payload (dict, optional): Updated payload. Defaults to None.
"""
collection = self.client.collections.get(str(self.collection_name))
if payload:
collection.data.update(uuid=vector_id, properties=payload)
if vector:
existing_data = self.get(vector_id)
if existing_data:
existing_data = dict(existing_data)
if "id" in existing_data:
del existing_data["id"]
existing_payload: Mapping[str, str] = existing_data
collection.data.update(uuid=vector_id, properties=existing_payload, vector=vector)
def get(self, vector_id):
"""
Retrieve a vector by ID.
Args:
vector_id: ID of the vector to retrieve.
Returns:
dict: Retrieved vector and metadata.
"""
vector_id = get_valid_uuid(vector_id)
collection = self.client.collections.get(str(self.collection_name))
response = collection.query.fetch_object_by_id(
uuid=vector_id,
return_properties=["hash", "created_at", "updated_at", "user_id", "agent_id", "run_id", "data", "category"],
)
# results = {}
# print("reponse",response)
# for obj in response.objects:
payload = response.properties.copy()
payload["id"] = str(response.uuid).split("'")[0]
results = OutputData(
id=str(response.uuid).split("'")[0],
score=1.0,
payload=payload,
)
return results
def list_cols(self):
"""
List all collections.
Returns:
list: List of collection names.
"""
collections = self.client.collections.list_all()
logger.debug(f"collections: {collections}")
print(f"collections: {collections}")
return {"collections": [{"name": col.name} for col in collections]}
def delete_col(self):
"""Delete a collection."""
self.client.collections.delete(self.collection_name)
def col_info(self):
"""
Get information about a collection.
Returns:
dict: Collection information.
"""
schema = self.client.collections.get(self.collection_name)
if schema:
return schema
return None
def list(self, filters=None, limit=100) -> List[OutputData]:
"""
List all vectors in a collection.
"""
collection = self.client.collections.get(self.collection_name)
filter_conditions = []
if filters:
for key, value in filters.items():
if value and key in ["user_id", "agent_id", "run_id"]:
filter_conditions.append(Filter.by_property(key).equal(value))
combined_filter = Filter.all_of(filter_conditions) if filter_conditions else None
response = collection.query.fetch_objects(
limit=limit,
filters=combined_filter,
return_properties=["hash", "created_at", "updated_at", "user_id", "agent_id", "run_id", "data", "category"],
)
results = []
for obj in response.objects:
payload = obj.properties.copy()
payload["id"] = str(obj.uuid).split("'")[0]
results.append(OutputData(id=str(obj.uuid).split("'")[0], score=1.0, payload=payload))
return [results]

View File

@@ -0,0 +1,220 @@
import os
import uuid
import httpx
import unittest
from unittest.mock import MagicMock, patch
import dotenv
import weaviate
from weaviate.classes.query import MetadataQuery, Filter
from weaviate.exceptions import UnexpectedStatusCodeException
from mem0.vector_stores.weaviate import Weaviate, OutputData
class TestWeaviateDB(unittest.TestCase):
@classmethod
def setUpClass(cls):
dotenv.load_dotenv()
cls.original_env = {
'WEAVIATE_CLUSTER_URL': os.getenv('WEAVIATE_CLUSTER_URL', 'http://localhost:8080'),
'WEAVIATE_API_KEY': os.getenv('WEAVIATE_API_KEY', 'test_api_key'),
}
os.environ['WEAVIATE_CLUSTER_URL'] = 'http://localhost:8080'
os.environ['WEAVIATE_API_KEY'] = 'test_api_key'
def setUp(self):
self.client_mock = MagicMock(spec=weaviate.WeaviateClient)
self.client_mock.collections = MagicMock()
self.client_mock.collections.exists.return_value = False
self.client_mock.collections.create.return_value = None
self.client_mock.collections.delete.return_value = None
patcher = patch('mem0.vector_stores.weaviate.weaviate.connect_to_local', return_value=self.client_mock)
self.mock_weaviate = patcher.start()
self.addCleanup(patcher.stop)
self.weaviate_db = Weaviate(
collection_name="test_collection",
embedding_model_dims=1536,
cluster_url=os.getenv('WEAVIATE_CLUSTER_URL'),
auth_client_secret=os.getenv('WEAVIATE_API_KEY'),
additional_headers={"X-OpenAI-Api-Key": "test_key"},
)
self.client_mock.reset_mock()
@classmethod
def tearDownClass(cls):
for key, value in cls.original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
def tearDown(self):
self.client_mock.reset_mock()
def test_create_col(self):
self.client_mock.collections.exists.return_value = False
self.weaviate_db.create_col(vector_size=1536)
self.client_mock.collections.create.assert_called_once()
self.client_mock.reset_mock()
self.client_mock.collections.exists.return_value = True
self.weaviate_db.create_col(vector_size=1536)
self.client_mock.collections.create.assert_not_called()
def test_insert(self):
self.client_mock.batch = MagicMock()
self.client_mock.batch.fixed_size.return_value.__enter__.return_value = MagicMock()
self.client_mock.collections.get.return_value.data.insert_many.return_value = {
"results": [{"id": "id1"}, {"id": "id2"}]
}
vectors = [[0.1] * 1536, [0.2] * 1536]
payloads = [{"key1": "value1"}, {"key2": "value2"}]
ids = [str(uuid.uuid4()), str(uuid.uuid4())]
results = self.weaviate_db.insert(vectors=vectors, payloads=payloads, ids=ids)
def test_get(self):
valid_uuid = str(uuid.uuid4())
mock_response = MagicMock()
mock_response.properties = {
"hash": "abc123",
"created_at": "2025-03-08T12:00:00Z",
"updated_at": "2025-03-08T13:00:00Z",
"user_id": "user_123",
"agent_id": "agent_456",
"run_id": "run_789",
"data": {"key": "value"},
"category": "test",
}
mock_response.uuid = valid_uuid
self.client_mock.collections.get.return_value.query.fetch_object_by_id.return_value = mock_response
result = self.weaviate_db.get(vector_id=valid_uuid)
assert result.id == valid_uuid
expected_payload = mock_response.properties.copy()
expected_payload["id"] = valid_uuid
assert result.payload == expected_payload
def test_get_not_found(self):
mock_response = httpx.Response(status_code=404, json={"error": "Not found"})
self.client_mock.collections.get.return_value.data.get_by_id.side_effect = UnexpectedStatusCodeException(
"Not found", mock_response
)
def test_search(self):
mock_objects = [
{
"uuid": "id1",
"properties": {"key1": "value1"},
"metadata": {"distance": 0.2}
}
]
mock_response = MagicMock()
mock_response.objects = []
for obj in mock_objects:
mock_obj = MagicMock()
mock_obj.uuid = obj["uuid"]
mock_obj.properties = obj["properties"]
mock_obj.metadata = MagicMock()
mock_obj.metadata.distance = obj["metadata"]["distance"]
mock_response.objects.append(mock_obj)
mock_hybrid = MagicMock()
self.client_mock.collections.get.return_value.query.hybrid = mock_hybrid
mock_hybrid.return_value = mock_response
query_vector = [0.1] * 1536
results = self.weaviate_db.search(query=query_vector, limit=5)
mock_hybrid.assert_called_once()
self.assertEqual(len(results), 1)
self.assertEqual(results[0].id, "id1")
self.assertEqual(results[0].score, 0.8)
def test_delete(self):
self.weaviate_db.delete(vector_id="id1")
self.client_mock.collections.get.return_value.data.delete_by_id.assert_called_once_with("id1")
def test_list(self):
mock_objects = []
mock_obj1 = MagicMock()
mock_obj1.uuid = "id1"
mock_obj1.properties = {"key1": "value1"}
mock_objects.append(mock_obj1)
mock_obj2 = MagicMock()
mock_obj2.uuid = "id2"
mock_obj2.properties = {"key2": "value2"}
mock_objects.append(mock_obj2)
mock_response = MagicMock()
mock_response.objects = mock_objects
mock_fetch = MagicMock()
self.client_mock.collections.get.return_value.query.fetch_objects = mock_fetch
mock_fetch.return_value = mock_response
results = self.weaviate_db.list(limit=10)
mock_fetch.assert_called_once()
# Verify results
self.assertEqual(len(results), 1)
self.assertEqual(len(results[0]), 2)
self.assertEqual(results[0][0].id, "id1")
self.assertEqual(results[0][0].payload["key1"], "value1")
self.assertEqual(results[0][1].id, "id2")
self.assertEqual(results[0][1].payload["key2"], "value2")
def test_list_cols(self):
mock_collection1 = MagicMock()
mock_collection1.name = "collection1"
mock_collection2 = MagicMock()
mock_collection2.name = "collection2"
self.client_mock.collections.list_all.return_value = [mock_collection1, mock_collection2]
result = self.weaviate_db.list_cols()
expected = {"collections": [{"name": "collection1"}, {"name": "collection2"}]}
assert result == expected
self.client_mock.collections.list_all.assert_called_once()
def test_delete_col(self):
self.weaviate_db.delete_col()
self.client_mock.collections.delete.assert_called_once_with("test_collection")
if __name__ == '__main__':
unittest.main()