adding param and return types (#1689)
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
from typing import Optional, List, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -15,26 +15,27 @@ from mem0.vector_stores.base import VectorStoreBase
|
||||
class OutputData(BaseModel):
|
||||
id: Optional[str] # memory id
|
||||
score: Optional[float] # distance
|
||||
payload: Optional[dict] # metadata
|
||||
payload: Optional[Dict] # metadata
|
||||
|
||||
|
||||
class ChromaDB(VectorStoreBase):
|
||||
def __init__(
|
||||
self,
|
||||
collection_name,
|
||||
client,
|
||||
host,
|
||||
port,
|
||||
path
|
||||
collection_name: str,
|
||||
client: Optional[chromadb.Client] = None,
|
||||
host: Optional[str] = None,
|
||||
port: Optional[int] = None,
|
||||
path: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Initialize the Chromadb vector store.
|
||||
|
||||
Args:
|
||||
client (chromadb.Client, optional): Existing chromadb client instance.
|
||||
host (str, optional): Host address for chromadb server.
|
||||
port (int, optional): Port for chromadb server.
|
||||
path (str, optional): Path for local chromadb database.
|
||||
collection_name (str): Name of the collection.
|
||||
client (chromadb.Client, optional): Existing chromadb client instance. Defaults to None.
|
||||
host (str, optional): Host address for chromadb server. Defaults to None.
|
||||
port (int, optional): Port for chromadb server. Defaults to None.
|
||||
path (str, optional): Path for local chromadb database. Defaults to None.
|
||||
"""
|
||||
if client:
|
||||
self.client = client
|
||||
@@ -57,15 +58,15 @@ class ChromaDB(VectorStoreBase):
|
||||
self.collection_name = collection_name
|
||||
self.collection = self.create_col(collection_name)
|
||||
|
||||
def _parse_output(self, data):
|
||||
def _parse_output(self, data: Dict) -> List[OutputData]:
|
||||
"""
|
||||
Parse the output data.
|
||||
|
||||
Args:
|
||||
data (dict): Output data.
|
||||
data (Dict): Output data.
|
||||
|
||||
Returns:
|
||||
list: Parsed output data.
|
||||
List[OutputData]: Parsed output data.
|
||||
"""
|
||||
keys = ['ids', 'distances', 'metadatas']
|
||||
values = []
|
||||
@@ -82,21 +83,24 @@ class ChromaDB(VectorStoreBase):
|
||||
result = []
|
||||
for i in range(max_length):
|
||||
entry = OutputData(
|
||||
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
|
||||
score=distances[i] if isinstance(distances, list) and distances and i < len(distances) else None,
|
||||
payload=metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None,
|
||||
)
|
||||
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
|
||||
score=distances[i] if isinstance(distances, list) and distances and i < len(distances) else None,
|
||||
payload=metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None,
|
||||
)
|
||||
result.append(entry)
|
||||
|
||||
return result
|
||||
|
||||
def create_col(self, name, embedding_fn=None):
|
||||
def create_col(self, name: str, embedding_fn: Optional[callable] = None):
|
||||
"""
|
||||
Create a new collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
embedding_fn (function): Embedding function to use. Defaults to None.
|
||||
embedding_fn (Optional[callable]): Embedding function to use. Defaults to None.
|
||||
|
||||
Returns:
|
||||
chromadb.Collection: The created or retrieved collection.
|
||||
"""
|
||||
# Skip creating collection if already exists
|
||||
collections = self.list_cols()
|
||||
@@ -110,102 +114,101 @@ class ChromaDB(VectorStoreBase):
|
||||
)
|
||||
return collection
|
||||
|
||||
def insert(self, vectors, payloads=None, ids=None):
|
||||
def insert(self, vectors: List[list], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
Args:
|
||||
vectors (list): List of vectors to insert.
|
||||
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
|
||||
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
|
||||
vectors (List[list]): List of vectors to insert.
|
||||
payloads (Optional[List[Dict]], optional): List of payloads corresponding to vectors. Defaults to None.
|
||||
ids (Optional[List[str]], optional): List of IDs corresponding to vectors. Defaults to None.
|
||||
"""
|
||||
|
||||
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
|
||||
|
||||
def search(self, query, limit=5, filters=None):
|
||||
def search(self, query: List[list], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
Args:
|
||||
query (list): Query vector.
|
||||
query (List[list]): Query vector.
|
||||
limit (int, optional): Number of results to return. Defaults to 5.
|
||||
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
||||
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
|
||||
|
||||
Returns:
|
||||
list: Search results.
|
||||
List[OutputData]: Search results.
|
||||
"""
|
||||
results = self.collection.query(query_embeddings=query, where=filters, n_results=limit)
|
||||
final_results = self._parse_output(results)
|
||||
return final_results
|
||||
|
||||
def delete(self, vector_id):
|
||||
def delete(self, vector_id: str):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (int): ID of the vector to delete.
|
||||
vector_id (str): ID of the vector to delete.
|
||||
"""
|
||||
|
||||
self.collection.delete(ids=vector_id)
|
||||
|
||||
def update(self, vector_id, vector=None, payload=None):
|
||||
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
Args:
|
||||
vector_id (int): ID of the vector to update.
|
||||
vector (list, optional): Updated vector. Defaults to None.
|
||||
payload (dict, optional): Updated payload. Defaults to None.
|
||||
vector_id (str): ID of the vector to update.
|
||||
vector (Optional[List[float]], optional): Updated vector. Defaults to None.
|
||||
payload (Optional[Dict], optional): Updated payload. Defaults to None.
|
||||
"""
|
||||
|
||||
self.collection.update(ids=vector_id, embeddings=vector, metadatas=payload)
|
||||
|
||||
def get(self, vector_id):
|
||||
def get(self, vector_id: str) -> OutputData:
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
Args:
|
||||
vector_id (int): ID of the vector to retrieve.
|
||||
vector_id (str): ID of the vector to retrieve.
|
||||
|
||||
Returns:
|
||||
dict: Retrieved vector.
|
||||
OutputData: Retrieved vector.
|
||||
"""
|
||||
result = self.collection.get(ids=[vector_id])
|
||||
return self._parse_output(result)[0]
|
||||
|
||||
def list_cols(self):
|
||||
def list_cols(self) -> List[chromadb.Collection]:
|
||||
"""
|
||||
List all collections.
|
||||
|
||||
Returns:
|
||||
list: List of collection names.
|
||||
List[chromadb.Collection]: List of collections.
|
||||
"""
|
||||
return self.client.list_collections()
|
||||
|
||||
def delete_col(self):
|
||||
""" Delete a collection. """
|
||||
"""
|
||||
Delete a collection.
|
||||
"""
|
||||
self.client.delete_collection(name=self.collection_name)
|
||||
|
||||
def col_info(self):
|
||||
def col_info(self) -> Dict:
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
Returns:
|
||||
dict: Collection information.
|
||||
Dict: Collection information.
|
||||
"""
|
||||
return self.client.get_collection(name=self.collection_name)
|
||||
|
||||
def list(self, filters=None, limit=100):
|
||||
def list(self, filters: Optional[Dict] = None, limit: int = 100) -> List[OutputData]:
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
filters (dict, optional): Filters to apply to the list.
|
||||
filters (Optional[Dict], optional): Filters to apply to the list. Defaults to None.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
list: List of vectors.
|
||||
List[OutputData]: List of vectors.
|
||||
"""
|
||||
array = [[0 for _ in range(1536)] for _ in range(1536)]
|
||||
results = self.collection.query(query_embeddings=array, where=filters, n_results=limit)
|
||||
return [self._parse_output(results)]
|
||||
return self._parse_output(results)
|
||||
|
||||
@@ -20,27 +20,29 @@ from mem0.vector_stores.base import VectorStoreBase
|
||||
class Qdrant(VectorStoreBase):
|
||||
def __init__(
|
||||
self,
|
||||
collection_name,
|
||||
embedding_model_dims,
|
||||
client,
|
||||
host,
|
||||
port,
|
||||
path,
|
||||
url,
|
||||
api_key,
|
||||
on_disk
|
||||
collection_name: str,
|
||||
embedding_model_dims: int,
|
||||
client: QdrantClient = None,
|
||||
host: str = None,
|
||||
port: int = None,
|
||||
path: str = None,
|
||||
url: str = None,
|
||||
api_key: str = None,
|
||||
on_disk: bool = False
|
||||
):
|
||||
"""
|
||||
Initialize the Qdrant vector store.
|
||||
|
||||
Args:
|
||||
client (QdrantClient, optional): Existing Qdrant client instance.
|
||||
host (str, optional): Host address for Qdrant server.
|
||||
port (int, optional): Port for Qdrant server.
|
||||
path (str, optional): Path for local Qdrant database.
|
||||
url (str, optional): Full URL for Qdrant server.
|
||||
api_key (str, optional): API key for Qdrant server.
|
||||
on_disk (bool, optional): Enables persistant storage.
|
||||
collection_name (str): Name of the collection.
|
||||
embedding_model_dims (int): Dimensions of the embedding model.
|
||||
client (QdrantClient, optional): Existing Qdrant client instance. Defaults to None.
|
||||
host (str, optional): Host address for Qdrant server. Defaults to None.
|
||||
port (int, optional): Port for Qdrant server. Defaults to None.
|
||||
path (str, optional): Path for local Qdrant database. Defaults to None.
|
||||
url (str, optional): Full URL for Qdrant server. Defaults to None.
|
||||
api_key (str, optional): API key for Qdrant server. Defaults to None.
|
||||
on_disk (bool, optional): Enables persistent storage. Defaults to False.
|
||||
"""
|
||||
if client:
|
||||
self.client = client
|
||||
@@ -64,13 +66,13 @@ class Qdrant(VectorStoreBase):
|
||||
self.collection_name = collection_name
|
||||
self.create_col(embedding_model_dims, on_disk)
|
||||
|
||||
def create_col(self, vector_size, on_disk, distance=Distance.COSINE):
|
||||
def create_col(self, vector_size: int, on_disk: bool, distance: Distance = Distance.COSINE):
|
||||
"""
|
||||
Create a new collection.
|
||||
|
||||
Args:
|
||||
name (str): Name of the collection.
|
||||
vector_size (int): Size of the vectors to be stored.
|
||||
on_disk (bool): Enables persistent storage.
|
||||
distance (Distance, optional): Distance metric for vector similarity. Defaults to Distance.COSINE.
|
||||
"""
|
||||
# Skip creating collection if already exists
|
||||
@@ -85,7 +87,7 @@ class Qdrant(VectorStoreBase):
|
||||
vectors_config=VectorParams(size=vector_size, distance=distance, on_disk=on_disk),
|
||||
)
|
||||
|
||||
def insert(self, vectors, payloads=None, ids=None):
|
||||
def insert(self, vectors: list, payloads: list = None, ids: list = None):
|
||||
"""
|
||||
Insert vectors into a collection.
|
||||
|
||||
@@ -104,7 +106,7 @@ class Qdrant(VectorStoreBase):
|
||||
]
|
||||
self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
def _create_filter(self, filters):
|
||||
def _create_filter(self, filters: dict) -> Filter:
|
||||
"""
|
||||
Create a Filter object from the provided filters.
|
||||
|
||||
@@ -128,7 +130,7 @@ class Qdrant(VectorStoreBase):
|
||||
)
|
||||
return Filter(must=conditions) if conditions else None
|
||||
|
||||
def search(self, query, limit=5, filters=None):
|
||||
def search(self, query: list, limit: int = 5, filters: dict = None) -> list:
|
||||
"""
|
||||
Search for similar vectors.
|
||||
|
||||
@@ -149,7 +151,7 @@ class Qdrant(VectorStoreBase):
|
||||
)
|
||||
return hits
|
||||
|
||||
def delete(self, vector_id):
|
||||
def delete(self, vector_id: int):
|
||||
"""
|
||||
Delete a vector by ID.
|
||||
|
||||
@@ -163,7 +165,7 @@ class Qdrant(VectorStoreBase):
|
||||
),
|
||||
)
|
||||
|
||||
def update(self, vector_id, vector=None, payload=None):
|
||||
def update(self, vector_id: int, vector: list = None, payload: dict = None):
|
||||
"""
|
||||
Update a vector and its payload.
|
||||
|
||||
@@ -175,7 +177,7 @@ class Qdrant(VectorStoreBase):
|
||||
point = PointStruct(id=vector_id, vector=vector, payload=payload)
|
||||
self.client.upsert(collection_name=self.collection_name, points=[point])
|
||||
|
||||
def get(self, vector_id):
|
||||
def get(self, vector_id: int) -> dict:
|
||||
"""
|
||||
Retrieve a vector by ID.
|
||||
|
||||
@@ -190,7 +192,7 @@ class Qdrant(VectorStoreBase):
|
||||
)
|
||||
return result[0] if result else None
|
||||
|
||||
def list_cols(self):
|
||||
def list_cols(self) -> list:
|
||||
"""
|
||||
List all collections.
|
||||
|
||||
@@ -203,7 +205,7 @@ class Qdrant(VectorStoreBase):
|
||||
""" Delete a collection. """
|
||||
self.client.delete_collection(collection_name=self.collection_name)
|
||||
|
||||
def col_info(self):
|
||||
def col_info(self) -> dict:
|
||||
"""
|
||||
Get information about a collection.
|
||||
|
||||
@@ -212,11 +214,12 @@ class Qdrant(VectorStoreBase):
|
||||
"""
|
||||
return self.client.get_collection(collection_name=self.collection_name)
|
||||
|
||||
def list(self, filters=None, limit=100):
|
||||
def list(self, filters: dict = None, limit: int = 100) -> list:
|
||||
"""
|
||||
List all vectors in a collection.
|
||||
|
||||
Args:
|
||||
filters (dict, optional): Filters to apply to the list. Defaults to None.
|
||||
limit (int, optional): Number of vectors to return. Defaults to 100.
|
||||
|
||||
Returns:
|
||||
|
||||
Reference in New Issue
Block a user