chore: load chunker from config (#270)

This commit is contained in:
cachho
2023-07-17 17:54:35 +02:00
committed by GitHub
parent 07ba65d88d
commit 9c58627372
10 changed files with 48 additions and 69 deletions

View File

@@ -13,7 +13,7 @@ Here's the readme example with configuration options.
```python
import os
from embedchain import App
from embedchain.config import InitConfig, AddConfig, QueryConfig
from embedchain.config import InitConfig, AddConfig, QueryConfig, ChunkerConfig
from chromadb.utils import embedding_functions
# Example: use your own embedding function
@@ -25,14 +25,8 @@ config = InitConfig(ef=embedding_functions.OpenAIEmbeddingFunction(
naval_chat_bot = App(config)
# Example: define your own chunker config for `youtube_video`
youtube_add_config = {
"chunker": {
"chunk_size": 1000,
"chunk_overlap": 100,
"length_function": len,
}
}
naval_chat_bot.add("youtube_video", "https://www.youtube.com/watch?v=3qHkcs3kG44", AddConfig(**youtube_add_config))
chunker_config = ChunkerConfig(chunk_size=1000, chunk_overlap=100, length_function=len)
naval_chat_bot.add("youtube_video", "https://www.youtube.com/watch?v=3qHkcs3kG44", AddConfig(chunker=chunker_config))
add_config = AddConfig()
naval_chat_bot.add("pdf_file", "https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf", add_config)

View File

@@ -5,18 +5,16 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config.AddConfig import ChunkerConfig
TEXT_SPLITTER_CHUNK_PARAMS = {
"chunk_size": 1000,
"chunk_overlap": 0,
"length_function": len,
}
class DocxFileChunker(BaseChunker):
"""Chunker for .docx file."""
def __init__(self, config: Optional[ChunkerConfig] = None):
if config is None:
config = TEXT_SPLITTER_CHUNK_PARAMS
text_splitter = RecursiveCharacterTextSplitter(**config)
config = ChunkerConfig(chunk_size=1000, chunk_overlap=0, length_function=len)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.chunk_size,
chunk_overlap=config.chunk_overlap,
length_function=config.length_function,
)
super().__init__(text_splitter)

View File

@@ -5,18 +5,16 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config.AddConfig import ChunkerConfig
TEXT_SPLITTER_CHUNK_PARAMS = {
"chunk_size": 1000,
"chunk_overlap": 0,
"length_function": len,
}
class PdfFileChunker(BaseChunker):
"""Chunker for PDF file."""
def __init__(self, config: Optional[ChunkerConfig] = None):
if config is None:
config = TEXT_SPLITTER_CHUNK_PARAMS
text_splitter = RecursiveCharacterTextSplitter(**config)
config = ChunkerConfig(chunk_size=1000, chunk_overlap=0, length_function=len)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.chunk_size,
chunk_overlap=config.chunk_overlap,
length_function=config.length_function,
)
super().__init__(text_splitter)

View File

@@ -5,18 +5,16 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config.AddConfig import ChunkerConfig
TEXT_SPLITTER_CHUNK_PARAMS = {
"chunk_size": 300,
"chunk_overlap": 0,
"length_function": len,
}
class QnaPairChunker(BaseChunker):
"""Chunker for QnA pair."""
def __init__(self, config: Optional[ChunkerConfig] = None):
if config is None:
config = TEXT_SPLITTER_CHUNK_PARAMS
text_splitter = RecursiveCharacterTextSplitter(**config)
config = ChunkerConfig(chunk_size=300, chunk_overlap=0, length_function=len)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.chunk_size,
chunk_overlap=config.chunk_overlap,
length_function=config.length_function,
)
super().__init__(text_splitter)

View File

@@ -5,18 +5,16 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config.AddConfig import ChunkerConfig
TEXT_SPLITTER_CHUNK_PARAMS = {
"chunk_size": 300,
"chunk_overlap": 0,
"length_function": len,
}
class TextChunker(BaseChunker):
"""Chunker for text."""
def __init__(self, config: Optional[ChunkerConfig] = None):
if config is None:
config = TEXT_SPLITTER_CHUNK_PARAMS
text_splitter = RecursiveCharacterTextSplitter(**config)
config = ChunkerConfig(chunk_size=300, chunk_overlap=0, length_function=len)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.chunk_size,
chunk_overlap=config.chunk_overlap,
length_function=config.length_function,
)
super().__init__(text_splitter)

View File

@@ -5,18 +5,16 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config.AddConfig import ChunkerConfig
TEXT_SPLITTER_CHUNK_PARAMS = {
"chunk_size": 500,
"chunk_overlap": 0,
"length_function": len,
}
class WebPageChunker(BaseChunker):
"""Chunker for web page."""
def __init__(self, config: Optional[ChunkerConfig] = None):
if config is None:
config = TEXT_SPLITTER_CHUNK_PARAMS
text_splitter = RecursiveCharacterTextSplitter(**config)
config = ChunkerConfig(chunk_size=500, chunk_overlap=0, length_function=len)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.chunk_size,
chunk_overlap=config.chunk_overlap,
length_function=config.length_function,
)
super().__init__(text_splitter)

View File

@@ -5,18 +5,16 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config.AddConfig import ChunkerConfig
TEXT_SPLITTER_CHUNK_PARAMS = {
"chunk_size": 2000,
"chunk_overlap": 0,
"length_function": len,
}
class YoutubeVideoChunker(BaseChunker):
"""Chunker for Youtube video."""
def __init__(self, config: Optional[ChunkerConfig] = None):
if config is None:
config = TEXT_SPLITTER_CHUNK_PARAMS
text_splitter = RecursiveCharacterTextSplitter(**config)
config = ChunkerConfig(chunk_size=2000, chunk_overlap=0, length_function=len)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config.chunk_size,
chunk_overlap=config.chunk_overlap,
length_function=config.length_function,
)
super().__init__(text_splitter)

View File

@@ -10,13 +10,13 @@ class ChunkerConfig(BaseConfig):
def __init__(
self,
chunk_size: Optional[int] = 4000,
chunk_overlap: Optional[int] = 200,
length_function: Optional[Callable[[str], int]] = len,
chunk_size: Optional[int] = None,
chunk_overlap: Optional[int] = None,
length_function: Optional[Callable[[str], int]] = None,
):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.length_function = length_function
self.chunk_size = chunk_size if chunk_size else 2000
self.chunk_overlap = chunk_overlap if chunk_overlap else 0
self.length_function = length_function if length_function else len
class LoaderConfig(BaseConfig):

View File

@@ -1,4 +1,4 @@
from .AddConfig import AddConfig # noqa: F401
from .AddConfig import AddConfig, ChunkerConfig # noqa: F401
from .BaseConfig import BaseConfig # noqa: F401
from .ChatConfig import ChatConfig # noqa: F401
from .InitConfig import InitConfig # noqa: F401

View File

@@ -3,6 +3,7 @@
import unittest
from embedchain.chunkers.text import TextChunker
from embedchain.config import ChunkerConfig
class TestTextChunker(unittest.TestCase):
@@ -11,11 +12,7 @@ class TestTextChunker(unittest.TestCase):
Test the chunks generated by TextChunker.
# TODO: Not a very precise test.
"""
chunker_config = {
"chunk_size": 10,
"chunk_overlap": 0,
"length_function": len,
}
chunker_config = ChunkerConfig(chunk_size=10, chunk_overlap=0, length_function=len)
chunker = TextChunker(config=chunker_config)
text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."