Add Support for Vertex AI Embeddings (#1840)

This commit is contained in:
Divyanshu Prasad
2024-09-13 17:09:25 +05:30
committed by GitHub
parent f9634b4bf3
commit 959f4bb059
5 changed files with 77 additions and 1 deletions

View File

@@ -53,6 +53,7 @@ Here's a comprehensive list of all parameters that can be used across different
| `model_kwargs` | Key-Value arguments for the Huggingface embedding model |
| `azure_kwargs` | Key-Value arguments for the AzureOpenAI embedding model |
| `openai_base_url` | Base URL for OpenAI API | OpenAI |
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file for VertexAI |
## Supported Embedding Models

View File

@@ -0,0 +1,35 @@
### Vertex AI
To use Google Cloud's Vertex AI for text embedding models, set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable to point to the path of your service account's credentials JSON file. These credentials can be created in the [Google Cloud Console](https://console.cloud.google.com/).
### Usage
```python
import os
from mem0 import Memory
# Set the path to your Google Cloud credentials JSON file
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/your/credentials.json"
config = {
"embedder": {
"provider": "vertexai",
"config": {
"model": "text-embedding-004"
}
}
}
m = Memory.from_config(config)
m.add("I'm visiting Paris", user_id="john")
```
### Config
Here are the parameters available for configuring the Vertex AI embedder:
| Parameter | Description | Default Value |
| ------------------------- | ------------------------------------------------ | -------------------- |
| `model` | The name of the Vertex AI embedding model to use | `text-embedding-004` |
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file | `None` |
| `embedding_dims` | Dimensions of the embedding model | `256` |

View File

@@ -13,6 +13,7 @@ See the list of supported embedders below.
<Card title="Azure OpenAI" href="/components/embedders/models/azure_openai"></Card>
<Card title="Ollama" href="/components/embedders/models/ollama"></Card>
<Card title="Hugging Face" href="/components/embedders/models/huggingface"></Card>
<Card title="Vertex AI" href="/components/embedders/models/vertexai"></Card>
</CardGroup>
## Usage

View File

@@ -15,7 +15,7 @@ class EmbedderConfig(BaseModel):
@field_validator("config")
def validate_config(cls, v, values):
provider = values.data.get("provider")
if provider in ["openai", "ollama", "huggingface", "azure_openai"]:
if provider in ["openai", "ollama", "huggingface", "azure_openai", "vertexai"]:
return v
else:
raise ValueError(f"Unsupported embedding provider: {provider}")

View File

@@ -0,0 +1,39 @@
import os
from typing import Optional
from vertexai.language_models import TextEmbeddingModel
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class VertexAI(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or 256
credentials_path = self.config.vertex_credentials_json
if credentials_path:
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path
elif not os.getenv("GOOGLE_APPLICATION_CREDENTIALS"):
raise ValueError(
"Google application credentials JSON is not provided. Please provide a valid JSON path or set the 'GOOGLE_APPLICATION_CREDENTIALS' environment variable."
)
self.model = TextEmbeddingModel.from_pretrained(self.config.model)
def embed(self, text):
"""
Get the embedding for the given text using Vertex AI.
Args:
text (str): The text to embed.
Returns:
list: The embedding vector.
"""
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality= self.config.embedding_dims)
return embeddings[0].values