Add Support for Vertex AI Embeddings (#1840)
This commit is contained in:
@@ -53,6 +53,7 @@ Here's a comprehensive list of all parameters that can be used across different
|
||||
| `model_kwargs` | Key-Value arguments for the Huggingface embedding model |
|
||||
| `azure_kwargs` | Key-Value arguments for the AzureOpenAI embedding model |
|
||||
| `openai_base_url` | Base URL for OpenAI API | OpenAI |
|
||||
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file for VertexAI |
|
||||
|
||||
|
||||
## Supported Embedding Models
|
||||
|
||||
35
docs/components/embedders/models/vertexai.mdx
Normal file
35
docs/components/embedders/models/vertexai.mdx
Normal file
@@ -0,0 +1,35 @@
|
||||
### Vertex AI
|
||||
|
||||
To use Google Cloud's Vertex AI for text embedding models, set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable to point to the path of your service account's credentials JSON file. These credentials can be created in the [Google Cloud Console](https://console.cloud.google.com/).
|
||||
|
||||
### Usage
|
||||
|
||||
```python
|
||||
import os
|
||||
from mem0 import Memory
|
||||
|
||||
# Set the path to your Google Cloud credentials JSON file
|
||||
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/your/credentials.json"
|
||||
|
||||
config = {
|
||||
"embedder": {
|
||||
"provider": "vertexai",
|
||||
"config": {
|
||||
"model": "text-embedding-004"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m = Memory.from_config(config)
|
||||
m.add("I'm visiting Paris", user_id="john")
|
||||
```
|
||||
|
||||
### Config
|
||||
|
||||
Here are the parameters available for configuring the Vertex AI embedder:
|
||||
|
||||
| Parameter | Description | Default Value |
|
||||
| ------------------------- | ------------------------------------------------ | -------------------- |
|
||||
| `model` | The name of the Vertex AI embedding model to use | `text-embedding-004` |
|
||||
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file | `None` |
|
||||
| `embedding_dims` | Dimensions of the embedding model | `256` |
|
||||
@@ -13,6 +13,7 @@ See the list of supported embedders below.
|
||||
<Card title="Azure OpenAI" href="/components/embedders/models/azure_openai"></Card>
|
||||
<Card title="Ollama" href="/components/embedders/models/ollama"></Card>
|
||||
<Card title="Hugging Face" href="/components/embedders/models/huggingface"></Card>
|
||||
<Card title="Vertex AI" href="/components/embedders/models/vertexai"></Card>
|
||||
</CardGroup>
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -15,7 +15,7 @@ class EmbedderConfig(BaseModel):
|
||||
@field_validator("config")
|
||||
def validate_config(cls, v, values):
|
||||
provider = values.data.get("provider")
|
||||
if provider in ["openai", "ollama", "huggingface", "azure_openai"]:
|
||||
if provider in ["openai", "ollama", "huggingface", "azure_openai", "vertexai"]:
|
||||
return v
|
||||
else:
|
||||
raise ValueError(f"Unsupported embedding provider: {provider}")
|
||||
|
||||
39
mem0/embeddings/vertexai.py
Normal file
39
mem0/embeddings/vertexai.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from vertexai.language_models import TextEmbeddingModel
|
||||
|
||||
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
||||
from mem0.embeddings.base import EmbeddingBase
|
||||
|
||||
class VertexAI(EmbeddingBase):
|
||||
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
||||
super().__init__(config)
|
||||
|
||||
self.config.model = self.config.model or "text-embedding-004"
|
||||
self.config.embedding_dims = self.config.embedding_dims or 256
|
||||
|
||||
credentials_path = self.config.vertex_credentials_json
|
||||
|
||||
if credentials_path:
|
||||
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path
|
||||
elif not os.getenv("GOOGLE_APPLICATION_CREDENTIALS"):
|
||||
raise ValueError(
|
||||
"Google application credentials JSON is not provided. Please provide a valid JSON path or set the 'GOOGLE_APPLICATION_CREDENTIALS' environment variable."
|
||||
)
|
||||
|
||||
self.model = TextEmbeddingModel.from_pretrained(self.config.model)
|
||||
|
||||
def embed(self, text):
|
||||
"""
|
||||
Get the embedding for the given text using Vertex AI.
|
||||
|
||||
Args:
|
||||
text (str): The text to embed.
|
||||
|
||||
Returns:
|
||||
list: The embedding vector.
|
||||
"""
|
||||
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality= self.config.embedding_dims)
|
||||
|
||||
return embeddings[0].values
|
||||
Reference in New Issue
Block a user