40 lines
1.4 KiB
Python
40 lines
1.4 KiB
Python
import os
|
|
from typing import Optional
|
|
|
|
from vertexai.language_models import TextEmbeddingModel
|
|
|
|
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
|
from mem0.embeddings.base import EmbeddingBase
|
|
|
|
class VertexAI(EmbeddingBase):
|
|
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
|
super().__init__(config)
|
|
|
|
self.config.model = self.config.model or "text-embedding-004"
|
|
self.config.embedding_dims = self.config.embedding_dims or 256
|
|
|
|
credentials_path = self.config.vertex_credentials_json
|
|
|
|
if credentials_path:
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path
|
|
elif not os.getenv("GOOGLE_APPLICATION_CREDENTIALS"):
|
|
raise ValueError(
|
|
"Google application credentials JSON is not provided. Please provide a valid JSON path or set the 'GOOGLE_APPLICATION_CREDENTIALS' environment variable."
|
|
)
|
|
|
|
self.model = TextEmbeddingModel.from_pretrained(self.config.model)
|
|
|
|
def embed(self, text):
|
|
"""
|
|
Get the embedding for the given text using Vertex AI.
|
|
|
|
Args:
|
|
text (str): The text to embed.
|
|
|
|
Returns:
|
|
list: The embedding vector.
|
|
"""
|
|
embeddings = self.model.get_embeddings(texts=[text], output_dimensionality= self.config.embedding_dims)
|
|
|
|
return embeddings[0].values
|