[Feature] Add citations flag in query and chat functions of App to return context along with the answer (#859)

This commit is contained in:
Deven Patel
2023-11-01 13:06:28 -07:00
committed by GitHub
parent 5022c1ae29
commit 930280f4ce
15 changed files with 279 additions and 112 deletions

View File

@@ -1,7 +1,7 @@
import copy
import os
import uuid
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
try:
from qdrant_client import QdrantClient
@@ -161,8 +161,13 @@ class QdrantDB(BaseVectorDB):
)
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -174,8 +179,11 @@ class QdrantDB(BaseVectorDB):
:param skip_embedding: A boolean flag indicating if the embedding for the documents to be added is to be
generated or not
:type skip_embedding: bool
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
@@ -202,14 +210,17 @@ class QdrantDB(BaseVectorDB):
limit=n_results,
)
response = []
contexts = []
for result in results:
context = result.payload["text"]
metadata = result.payload["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
response.append(tuple((context, source, doc_id)))
return response
if citations:
metadata = result.payload["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append(tuple((context, source, doc_id)))
else:
contexts.append(context)
return contexts
def count(self) -> int:
response = self.client.get_collection(collection_name=self.collection_name)