[Feature] Add citations flag in query and chat functions of App to return context along with the answer (#859)

This commit is contained in:
Deven Patel
2023-11-01 13:06:28 -07:00
committed by GitHub
parent 5022c1ae29
commit 930280f4ce
15 changed files with 279 additions and 112 deletions

View File

@@ -4,7 +4,7 @@ import logging
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple, Union
from dotenv import load_dotenv
from langchain.docstore.document import Document
@@ -438,7 +438,9 @@ class EmbedChain(JSONSerializable):
)
]
def retrieve_from_database(self, input_query: str, config: Optional[BaseLlmConfig] = None, where=None) -> List[str]:
def retrieve_from_database(
self, input_query: str, config: Optional[BaseLlmConfig] = None, where=None, citations: bool = False
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
Queries the vector database based on the given input query.
Gets relevant doc based on the query
@@ -449,6 +451,8 @@ class EmbedChain(JSONSerializable):
:type config: Optional[BaseLlmConfig], optional
:param where: A dictionary of key-value pairs to filter the database results, defaults to None
:type where: _type_, optional
:param citations: A boolean to indicate if db should fetch citation source
:type citations: bool
:return: List of contents of the document that matched your query
:rtype: List[str]
"""
@@ -478,14 +482,19 @@ class EmbedChain(JSONSerializable):
n_results=query_config.number_documents,
where=where,
skip_embedding=(hasattr(config, "query_type") and config.query_type == "Images"),
citations=citations,
)
if len(contexts) > 0 and isinstance(contexts[0], tuple):
contexts = list(map(lambda x: x[0], contexts))
return contexts
def query(self, input_query: str, config: BaseLlmConfig = None, dry_run=False, where: Optional[Dict] = None) -> str:
def query(
self,
input_query: str,
config: BaseLlmConfig = None,
dry_run=False,
where: Optional[Dict] = None,
**kwargs: Dict[str, Any],
) -> Union[Tuple[str, List[Tuple[str, str, str]]], str]:
"""
Queries the vector database based on the given input query.
Gets relevant doc based on the query and then passes it to an
@@ -501,15 +510,31 @@ class EmbedChain(JSONSerializable):
:type dry_run: bool, optional
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
:type where: Optional[Dict[str, str]], optional
:return: The answer to the query or the dry run result
:rtype: str
:param kwargs: To read more params for the query function. Ex. we use citations boolean
param to return context along with the answer
:type kwargs: Dict[str, Any]
:return: The answer to the query, with citations if the citation flag is True
or the dry run result
:rtype: str, if citations is False, otherwise Tuple[str,List[Tuple[str,str,str]]]
"""
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
answer = self.llm.query(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
citations = kwargs.get("citations", False)
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where, citations=citations)
if citations and len(contexts) > 0 and isinstance(contexts[0], tuple):
contexts_data_for_llm_query = list(map(lambda x: x[0], contexts))
else:
contexts_data_for_llm_query = contexts
answer = self.llm.query(
input_query=input_query, contexts=contexts_data_for_llm_query, config=config, dry_run=dry_run
)
# Send anonymous telemetry
self.telemetry.capture(event_name="query", properties=self._telemetry_props)
return answer
if citations:
return answer, contexts
else:
return answer
def chat(
self,
@@ -517,6 +542,7 @@ class EmbedChain(JSONSerializable):
config: Optional[BaseLlmConfig] = None,
dry_run=False,
where: Optional[Dict[str, str]] = None,
**kwargs: Dict[str, Any],
) -> str:
"""
Queries the vector database on the given input query.
@@ -535,15 +561,31 @@ class EmbedChain(JSONSerializable):
:type dry_run: bool, optional
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
:type where: Optional[Dict[str, str]], optional
:return: The answer to the query or the dry run result
:rtype: str
:param kwargs: To read more params for the query function. Ex. we use citations boolean
param to return context along with the answer
:type kwargs: Dict[str, Any]
:return: The answer to the query, with citations if the citation flag is True
or the dry run result
:rtype: str, if citations is False, otherwise Tuple[str,List[Tuple[str,str,str]]]
"""
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
answer = self.llm.chat(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
citations = kwargs.get("citations", False)
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where, citations=citations)
if citations and len(contexts) > 0 and isinstance(contexts[0], tuple):
contexts_data_for_llm_query = list(map(lambda x: x[0], contexts))
else:
contexts_data_for_llm_query = contexts
answer = self.llm.chat(
input_query=input_query, contexts=contexts_data_for_llm_query, config=config, dry_run=dry_run
)
# Send anonymous telemetry
self.telemetry.capture(event_name="chat", properties=self._telemetry_props)
return answer
if citations:
return answer, contexts
else:
return answer
def set_collection_name(self, name: str):
"""

View File

@@ -234,6 +234,7 @@ class Pipeline(EmbedChain):
n_results=num_documents,
where=where,
skip_embedding=False,
citations=True,
)
result = []
for c in context:

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any, Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple, Union
from chromadb import Collection, QueryResult
from langchain.docstore.document import Document
@@ -192,8 +192,13 @@ class ChromaDB(BaseVectorDB):
]
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
Query contents from vector database based on vector similarity
@@ -205,9 +210,12 @@ class ChromaDB(BaseVectorDB):
:type where: Dict[str, Any]
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
:type skip_embedding: bool
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:raises InvalidDimensionException: Dimensions do not match.
:return: The content of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
try:
if skip_embedding:
@@ -236,10 +244,13 @@ class ChromaDB(BaseVectorDB):
contexts = []
for result in results_formatted:
context = result[0].page_content
metadata = result[0].metadata
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append((context, source, doc_id))
if citations:
metadata = result[0].metadata
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append((context, source, doc_id))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):

View File

@@ -1,5 +1,5 @@
import logging
from typing import Any, Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple, Union
try:
from elasticsearch import Elasticsearch
@@ -136,8 +136,13 @@ class ElasticsearchDB(BaseVectorDB):
self.client.indices.refresh(index=self._get_index())
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
query contents from vector data base based on vector similarity
@@ -150,8 +155,11 @@ class ElasticsearchDB(BaseVectorDB):
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
:type skip_embedding: bool
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if skip_embedding:
query_vector = input_query
@@ -175,14 +183,17 @@ class ElasticsearchDB(BaseVectorDB):
_source = ["text", "metadata.url", "metadata.doc_id"]
response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
docs = response["hits"]["hits"]
contents = []
contexts = []
for doc in docs:
context = doc["_source"]["text"]
metadata = doc["_source"]["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contents.append(tuple((context, source, doc_id)))
return contents
if citations:
metadata = doc["_source"]["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append(tuple((context, source, doc_id)))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):
"""

View File

@@ -1,5 +1,5 @@
import logging
from typing import Dict, List, Optional, Set, Tuple
from typing import Dict, List, Optional, Set, Tuple, Union
try:
from opensearchpy import OpenSearch
@@ -146,8 +146,13 @@ class OpenSearchDB(BaseVectorDB):
self.client.indices.refresh(index=self._get_index())
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
query contents from vector data base based on vector similarity
@@ -159,8 +164,11 @@ class OpenSearchDB(BaseVectorDB):
:type where: Dict[str, any]
:param skip_embedding: Optional. If True, then the input_query is assumed to be already embedded.
:type skip_embedding: bool
:return: The content of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
# TODO(rupeshbansal, deshraj): Add support for skip embeddings here if already exists
embeddings = OpenAIEmbeddings()
@@ -188,13 +196,16 @@ class OpenSearchDB(BaseVectorDB):
k=n_results,
)
contents = []
contexts = []
for doc in docs:
context = doc.page_content
source = doc.metadata["url"]
doc_id = doc.metadata["doc_id"]
contents.append(tuple((context, source, doc_id)))
return contents
if citations:
source = doc.metadata["url"]
doc_id = doc.metadata["doc_id"]
contexts.append(tuple((context, source, doc_id)))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):
"""

View File

@@ -1,5 +1,5 @@
import os
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
try:
import pinecone
@@ -119,8 +119,13 @@ class PineconeDB(BaseVectorDB):
self.client.upsert(docs[i : i + self.BATCH_SIZE])
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -131,22 +136,28 @@ class PineconeDB(BaseVectorDB):
:type where: Dict[str, any]
:param skip_embedding: Optional. if True, input_query is already embedded
:type skip_embedding: bool
:return: The content of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
else:
query_vector = input_query
data = self.client.query(vector=query_vector, filter=where, top_k=n_results, include_metadata=True)
contents = []
contexts = []
for doc in data["matches"]:
metadata = doc["metadata"]
context = metadata["text"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contents.append(tuple((context, source, doc_id)))
return contents
if citations:
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append(tuple((context, source, doc_id)))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):
"""

View File

@@ -1,7 +1,7 @@
import copy
import os
import uuid
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
try:
from qdrant_client import QdrantClient
@@ -161,8 +161,13 @@ class QdrantDB(BaseVectorDB):
)
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -174,8 +179,11 @@ class QdrantDB(BaseVectorDB):
:param skip_embedding: A boolean flag indicating if the embedding for the documents to be added is to be
generated or not
:type skip_embedding: bool
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
@@ -202,14 +210,17 @@ class QdrantDB(BaseVectorDB):
limit=n_results,
)
response = []
contexts = []
for result in results:
context = result.payload["text"]
metadata = result.payload["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
response.append(tuple((context, source, doc_id)))
return response
if citations:
metadata = result.payload["metadata"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append(tuple((context, source, doc_id)))
else:
contexts.append(context)
return contexts
def count(self) -> int:
response = self.client.get_collection(collection_name=self.collection_name)

View File

@@ -1,6 +1,6 @@
import copy
import os
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
try:
import weaviate
@@ -58,10 +58,14 @@ class WeaviateDB(BaseVectorDB):
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
self.index_name = self._get_index_name()
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id", "text"}
self.metadata_keys = {"data_type", "doc_id", "url", "hash", "app_id"}
if not self.client.schema.exists(self.index_name):
# id is a reserved field in Weaviate, hence we had to change the name of the id field to identifier
# The none vectorizer is crucial as we have our own custom embedding function
"""
TODO: wait for weaviate to add indexing on `object[]` data-type so that we can add filter while querying.
Once that is done, change `dataType` of "metadata" field to `object[]` and update the query below.
"""
class_obj = {
"classes": [
{
@@ -106,10 +110,6 @@ class WeaviateDB(BaseVectorDB):
"name": "app_id",
"dataType": ["text"],
},
{
"name": "text",
"dataType": ["text"],
},
],
},
]
@@ -195,8 +195,13 @@ class WeaviateDB(BaseVectorDB):
batch.add_reference(obj_uuid, self.index_name, "metadata", metadata_uuid, self.index_name + "_metadata")
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -208,15 +213,23 @@ class WeaviateDB(BaseVectorDB):
:param skip_embedding: A boolean flag indicating if the embedding for the documents to be added is to be
generated or not
:type skip_embedding: bool
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
else:
query_vector = input_query
keys = set(where.keys() if where is not None else set())
data_fields = ["text"]
if citations:
data_fields.append(weaviate.LinkTo("metadata", self.index_name + "_metadata", list(self.metadata_keys)))
if len(keys.intersection(self.metadata_keys)) != 0:
weaviate_where_operands = []
for key in keys:
@@ -247,7 +260,18 @@ class WeaviateDB(BaseVectorDB):
.with_limit(n_results)
.do()
)
contexts = results["data"]["Get"].get(self.index_name)
docs = results["data"]["Get"].get(self.index_name)
contexts = []
for doc in docs:
context = doc["text"]
if citations:
metadata = doc["metadata"][0]
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append((context, source, doc_id))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):

View File

@@ -1,5 +1,5 @@
import logging
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
from embedchain.config import ZillizDBConfig
from embedchain.helper.json_serializable import register_deserializable
@@ -127,8 +127,13 @@ class ZillizVectorDB(BaseVectorDB):
self.client.flush(self.config.collection_name)
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
Query contents from vector data base based on vector similarity
@@ -139,8 +144,11 @@ class ZillizVectorDB(BaseVectorDB):
:param where: to filter data
:type where: str
:raises InvalidDimensionException: Dimensions do not match.
:return: The context of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if self.collection.is_empty:
@@ -170,14 +178,17 @@ class ZillizVectorDB(BaseVectorDB):
output_fields=output_fields,
)
doc_list = []
contexts = []
for query in query_result:
data = query[0]["entity"]
context = data["text"]
source = data["url"]
doc_id = data["doc_id"]
doc_list.append(tuple((context, source, doc_id)))
return doc_list
if citations:
source = data["url"]
doc_id = data["doc_id"]
contexts.append(tuple((context, source, doc_id)))
else:
contexts.append(context)
return contexts
def count(self) -> int:
"""

2
poetry.lock generated
View File

@@ -7141,4 +7141,4 @@ whatsapp = ["flask", "twilio"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<3.13"
content-hash = "0b83ba3fd2485b3b4aa3c6a7534b214378d349538f7eb63c65768aafecdfad60"
content-hash = "0b83ba3fd2485b3b4aa3c6a7534b214378d349538f7eb63c65768aafecdfad60"

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "embedchain"
version = "0.0.88"
version = "0.0.89"
description = "Data platform for LLMs - Load, index, retrieve and sync any unstructured data"
authors = [
"Taranjeet Singh <taranjeet@embedchain.ai>",

View File

@@ -163,10 +163,12 @@ def test_chroma_db_collection_add_with_skip_embedding(app_with_settings):
assert data == expected_value
data = app_with_settings.db.query(input_query=[0, 0, 0], where={}, n_results=1, skip_embedding=True)
expected_value = [("document", "url_1", "doc_id_1")]
data_without_citations = app_with_settings.db.query(
input_query=[0, 0, 0], where={}, n_results=1, skip_embedding=True
)
expected_value_without_citations = ["document"]
assert data_without_citations == expected_value_without_citations
assert data == expected_value
app_with_settings.db.reset()
@@ -326,8 +328,16 @@ def test_chroma_db_collection_query(app_with_settings):
assert app_with_settings.db.count() == 2
data = app_with_settings.db.query(input_query=[0, 0, 0], where={}, n_results=2, skip_embedding=True)
expected_value = [("document", "url_1", "doc_id_1"), ("document2", "url_2", "doc_id_2")]
data_without_citations = app_with_settings.db.query(
input_query=[0, 0, 0], where={}, n_results=2, skip_embedding=True
)
expected_value_without_citations = ["document", "document2"]
assert data_without_citations == expected_value_without_citations
data_with_citations = app_with_settings.db.query(
input_query=[0, 0, 0], where={}, n_results=2, skip_embedding=True, citations=True
)
expected_value_with_citations = [("document", "url_1", "doc_id_1"), ("document2", "url_2", "doc_id_2")]
assert data_with_citations == expected_value_with_citations
assert data == expected_value
app_with_settings.db.reset()

View File

@@ -60,12 +60,16 @@ class TestEsDB(unittest.TestCase):
# Query the database for the documents that are most similar to the query "This is a document".
query = ["This is a document"]
results = self.db.query(query, n_results=2, where={}, skip_embedding=False)
results_without_citations = self.db.query(query, n_results=2, where={}, skip_embedding=False)
expected_results_without_citations = ["This is a document.", "This is another document."]
self.assertEqual(results_without_citations, expected_results_without_citations)
# Assert that the results are correct.
self.assertEqual(
results, [("This is a document.", "url_1", "doc_id_1"), ("This is another document.", "url_2", "doc_id_2")]
)
results_with_citations = self.db.query(query, n_results=2, where={}, skip_embedding=False, citations=True)
expected_results_with_citations = [
("This is a document.", "url_1", "doc_id_1"),
("This is another document.", "url_2", "doc_id_2"),
]
self.assertEqual(results_with_citations, expected_results_with_citations)
@patch("embedchain.vectordb.elasticsearch.Elasticsearch")
def test_query_with_skip_embedding(self, mock_client):
@@ -111,9 +115,7 @@ class TestEsDB(unittest.TestCase):
results = self.db.query(query, n_results=2, where={}, skip_embedding=True)
# Assert that the results are correct.
self.assertEqual(
results, [("This is a document.", "url_1", "doc_id_1"), ("This is another document.", "url_2", "doc_id_2")]
)
self.assertEqual(results, ["This is a document.", "This is another document."])
def test_init_without_url(self):
# Make sure it's not loaded from env

View File

@@ -75,10 +75,6 @@ class TestWeaviateDb(unittest.TestCase):
"name": "app_id",
"dataType": ["text"],
},
{
"name": "text",
"dataType": ["text"],
},
],
},
]

View File

@@ -129,7 +129,7 @@ class TestZillizDBCollection:
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=True)
# Assert that MilvusClient.search was called with the correct parameters
mock_search.assert_called_once_with(
mock_search.assert_called_with(
collection_name=mock_config.collection_name,
data=["query_text"],
limit=1,
@@ -137,7 +137,20 @@ class TestZillizDBCollection:
)
# Assert that the query result matches the expected result
assert query_result == [("result_doc", "url_1", "doc_id_1")]
assert query_result == ["result_doc"]
query_result_with_citations = zilliz_db.query(
input_query=["query_text"], n_results=1, where={}, skip_embedding=True, citations=True
)
mock_search.assert_called_with(
collection_name=mock_config.collection_name,
data=["query_text"],
limit=1,
output_fields=["text", "url", "doc_id"],
)
assert query_result_with_citations == [("result_doc", "url_1", "doc_id_1")]
@patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
@patch("embedchain.vectordb.zilliz.connections", autospec=True)
@@ -168,7 +181,7 @@ class TestZillizDBCollection:
query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=False)
# Assert that MilvusClient.search was called with the correct parameters
mock_search.assert_called_once_with(
mock_search.assert_called_with(
collection_name=mock_config.collection_name,
data=["query_vector"],
limit=1,
@@ -176,4 +189,17 @@ class TestZillizDBCollection:
)
# Assert that the query result matches the expected result
assert query_result == [("result_doc", "url_1", "doc_id_1")]
assert query_result == ["result_doc"]
query_result_with_citations = zilliz_db.query(
input_query=["query_text"], n_results=1, where={}, skip_embedding=False, citations=True
)
mock_search.assert_called_with(
collection_name=mock_config.collection_name,
data=["query_vector"],
limit=1,
output_fields=["text", "url", "doc_id"],
)
assert query_result_with_citations == [("result_doc", "url_1", "doc_id_1")]