[Feature] Add citations flag in query and chat functions of App to return context along with the answer (#859)

This commit is contained in:
Deven Patel
2023-11-01 13:06:28 -07:00
committed by GitHub
parent 5022c1ae29
commit 930280f4ce
15 changed files with 279 additions and 112 deletions

View File

@@ -1,5 +1,5 @@
import os
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
try:
import pinecone
@@ -119,8 +119,13 @@ class PineconeDB(BaseVectorDB):
self.client.upsert(docs[i : i + self.BATCH_SIZE])
def query(
self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool
) -> List[Tuple[str, str, str]]:
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
skip_embedding: bool,
citations: bool = False,
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
@@ -131,22 +136,28 @@ class PineconeDB(BaseVectorDB):
:type where: Dict[str, any]
:param skip_embedding: Optional. if True, input_query is already embedded
:type skip_embedding: bool
:return: The content of the document that matched your query, url of the source, doc_id
:rtype: List[Tuple[str,str,str]]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
if not skip_embedding:
query_vector = self.embedder.embedding_fn([input_query])[0]
else:
query_vector = input_query
data = self.client.query(vector=query_vector, filter=where, top_k=n_results, include_metadata=True)
contents = []
contexts = []
for doc in data["matches"]:
metadata = doc["metadata"]
context = metadata["text"]
source = metadata["url"]
doc_id = metadata["doc_id"]
contents.append(tuple((context, source, doc_id)))
return contents
if citations:
source = metadata["url"]
doc_id = metadata["doc_id"]
contexts.append(tuple((context, source, doc_id)))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):
"""