[Feature] Add citations flag in query and chat functions of App to return context along with the answer (#859)

This commit is contained in:
Deven Patel
2023-11-01 13:06:28 -07:00
committed by GitHub
parent 5022c1ae29
commit 930280f4ce
15 changed files with 279 additions and 112 deletions

View File

@@ -4,7 +4,7 @@ import logging
import os
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple, Union
from dotenv import load_dotenv
from langchain.docstore.document import Document
@@ -438,7 +438,9 @@ class EmbedChain(JSONSerializable):
)
]
def retrieve_from_database(self, input_query: str, config: Optional[BaseLlmConfig] = None, where=None) -> List[str]:
def retrieve_from_database(
self, input_query: str, config: Optional[BaseLlmConfig] = None, where=None, citations: bool = False
) -> Union[List[Tuple[str, str, str]], List[str]]:
"""
Queries the vector database based on the given input query.
Gets relevant doc based on the query
@@ -449,6 +451,8 @@ class EmbedChain(JSONSerializable):
:type config: Optional[BaseLlmConfig], optional
:param where: A dictionary of key-value pairs to filter the database results, defaults to None
:type where: _type_, optional
:param citations: A boolean to indicate if db should fetch citation source
:type citations: bool
:return: List of contents of the document that matched your query
:rtype: List[str]
"""
@@ -478,14 +482,19 @@ class EmbedChain(JSONSerializable):
n_results=query_config.number_documents,
where=where,
skip_embedding=(hasattr(config, "query_type") and config.query_type == "Images"),
citations=citations,
)
if len(contexts) > 0 and isinstance(contexts[0], tuple):
contexts = list(map(lambda x: x[0], contexts))
return contexts
def query(self, input_query: str, config: BaseLlmConfig = None, dry_run=False, where: Optional[Dict] = None) -> str:
def query(
self,
input_query: str,
config: BaseLlmConfig = None,
dry_run=False,
where: Optional[Dict] = None,
**kwargs: Dict[str, Any],
) -> Union[Tuple[str, List[Tuple[str, str, str]]], str]:
"""
Queries the vector database based on the given input query.
Gets relevant doc based on the query and then passes it to an
@@ -501,15 +510,31 @@ class EmbedChain(JSONSerializable):
:type dry_run: bool, optional
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
:type where: Optional[Dict[str, str]], optional
:return: The answer to the query or the dry run result
:rtype: str
:param kwargs: To read more params for the query function. Ex. we use citations boolean
param to return context along with the answer
:type kwargs: Dict[str, Any]
:return: The answer to the query, with citations if the citation flag is True
or the dry run result
:rtype: str, if citations is False, otherwise Tuple[str,List[Tuple[str,str,str]]]
"""
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
answer = self.llm.query(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
citations = kwargs.get("citations", False)
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where, citations=citations)
if citations and len(contexts) > 0 and isinstance(contexts[0], tuple):
contexts_data_for_llm_query = list(map(lambda x: x[0], contexts))
else:
contexts_data_for_llm_query = contexts
answer = self.llm.query(
input_query=input_query, contexts=contexts_data_for_llm_query, config=config, dry_run=dry_run
)
# Send anonymous telemetry
self.telemetry.capture(event_name="query", properties=self._telemetry_props)
return answer
if citations:
return answer, contexts
else:
return answer
def chat(
self,
@@ -517,6 +542,7 @@ class EmbedChain(JSONSerializable):
config: Optional[BaseLlmConfig] = None,
dry_run=False,
where: Optional[Dict[str, str]] = None,
**kwargs: Dict[str, Any],
) -> str:
"""
Queries the vector database on the given input query.
@@ -535,15 +561,31 @@ class EmbedChain(JSONSerializable):
:type dry_run: bool, optional
:param where: A dictionary of key-value pairs to filter the database results., defaults to None
:type where: Optional[Dict[str, str]], optional
:return: The answer to the query or the dry run result
:rtype: str
:param kwargs: To read more params for the query function. Ex. we use citations boolean
param to return context along with the answer
:type kwargs: Dict[str, Any]
:return: The answer to the query, with citations if the citation flag is True
or the dry run result
:rtype: str, if citations is False, otherwise Tuple[str,List[Tuple[str,str,str]]]
"""
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
answer = self.llm.chat(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
citations = kwargs.get("citations", False)
contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where, citations=citations)
if citations and len(contexts) > 0 and isinstance(contexts[0], tuple):
contexts_data_for_llm_query = list(map(lambda x: x[0], contexts))
else:
contexts_data_for_llm_query = contexts
answer = self.llm.chat(
input_query=input_query, contexts=contexts_data_for_llm_query, config=config, dry_run=dry_run
)
# Send anonymous telemetry
self.telemetry.capture(event_name="chat", properties=self._telemetry_props)
return answer
if citations:
return answer, contexts
else:
return answer
def set_collection_name(self, name: str):
"""