[Feature] Add support for Groq LLMs (#1284)
This commit is contained in:
@@ -23,6 +23,7 @@ class LlmFactory:
|
||||
"google": "embedchain.llm.google.GoogleLlm",
|
||||
"aws_bedrock": "embedchain.llm.aws_bedrock.AWSBedrockLlm",
|
||||
"mistralai": "embedchain.llm.mistralai.MistralAILlm",
|
||||
"groq": "embedchain.llm.groq.GroqLlm",
|
||||
}
|
||||
provider_to_config_class = {
|
||||
"embedchain": "embedchain.config.llm.base.BaseLlmConfig",
|
||||
|
||||
43
embedchain/llm/groq.py
Normal file
43
embedchain/llm/groq.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
|
||||
try:
|
||||
from langchain_groq import ChatGroq
|
||||
except ImportError:
|
||||
raise ImportError("Groq requires extra dependencies. Install with `pip install langchain-groq`") from None
|
||||
|
||||
|
||||
from embedchain.config import BaseLlmConfig
|
||||
from embedchain.helpers.json_serializable import register_deserializable
|
||||
from embedchain.llm.base import BaseLlm
|
||||
|
||||
|
||||
@register_deserializable
|
||||
class GroqLlm(BaseLlm):
|
||||
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
||||
super().__init__(config=config)
|
||||
|
||||
def get_llm_model_answer(self, prompt) -> str:
|
||||
response = self._get_answer(prompt, self.config)
|
||||
return response
|
||||
|
||||
def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
|
||||
messages = []
|
||||
if config.system_prompt:
|
||||
messages.append(SystemMessage(content=config.system_prompt))
|
||||
messages.append(HumanMessage(content=prompt))
|
||||
api_key = config.api_key or os.environ["GROQ_API_KEY"]
|
||||
kwargs = {
|
||||
"model_name": config.model or "mixtral-8x7b-32768",
|
||||
"temperature": config.temperature,
|
||||
"groq_api_key": api_key,
|
||||
}
|
||||
if config.stream:
|
||||
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
|
||||
chat = ChatGroq(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
|
||||
else:
|
||||
chat = ChatGroq(**kwargs)
|
||||
return chat.invoke(messages).content
|
||||
@@ -58,8 +58,7 @@ class OpenAILlm(BaseLlm):
|
||||
messages: list[BaseMessage],
|
||||
) -> str:
|
||||
from langchain.output_parsers.openai_tools import JsonOutputToolsParser
|
||||
from langchain_core.utils.function_calling import \
|
||||
convert_to_openai_tool
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
openai_tools = [convert_to_openai_tool(tools)]
|
||||
chat = chat.bind(tools=openai_tools).pipe(JsonOutputToolsParser())
|
||||
|
||||
@@ -406,9 +406,11 @@ def validate_config(config_data):
|
||||
"aws_bedrock",
|
||||
"mistralai",
|
||||
"vllm",
|
||||
"groq",
|
||||
),
|
||||
Optional("config"): {
|
||||
Optional("model"): str,
|
||||
Optional("model_name"): str,
|
||||
Optional("number_documents"): int,
|
||||
Optional("temperature"): float,
|
||||
Optional("max_tokens"): int,
|
||||
|
||||
Reference in New Issue
Block a user